Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 220(1): 27-45, 2003 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-12453448

RESUMO

We address the question, related with the origin of the genetic code, of why are there three bases per codon in the translation to protein process. As a follow-up to our previous work (Aldana et al., 1998, Martínez-Mekler et al., 1999a,b), we approach this problem by considering the translocation properties of primitive molecular machines, which capture basic features of ribosomal/messenger RNA interactions, while operating under prebiotic conditions. Our model consists of a short one-dimensional chain of charged particles (rRNA antecedent) interacting with a polymer (mRNA antecedent) via electrostatic forces. The chain is subject to external forcing that causes it to move along the polymer which is fixed in a quasi-one-dimensional geometry. Our numerical and analytic studies of statistical properties of random chain/polymer potentials suggest that, under very general conditions, a dynamics is attained in which the chain moves along the polymer in steps of three monomers. By adjusting the model in order to consider present-day genetic sequences, we show that the above property is enhanced for coding regions. Intergenic sequences display a behavior closer to the random situation. We argue that this dynamical property could be one of the underlying causes for the three-base codon structure of the genetic code


Assuntos
Evolução Molecular , Código Genético , Modelos Genéticos , Translocação Genética , Animais , Códon , Origem da Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...