Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 24(14): 976-84, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23216158

RESUMO

The particle size distribution of aerosols produced by electronic cigarettes was measured in an undiluted state by a spectral transmission procedure and after high dilution with an electrical mobility analyzer. The undiluted e-cigarette aerosols were found to have particle diameters of average mass in the 250-450 nm range and particle number concentrations in the 10(9) particles/cm(3) range. These measurements are comparable to those observed for tobacco burning cigarette smoke in prior studies and also measured in the current study with the spectral transmission method and with the electrical mobility procedure. Total particulate mass for the e-cigarettes calculated from the size distribution parameters measured by spectral transmission were in good agreement with replicate determinations of total particulate mass by gravimetric filter collection. In contrast, average particle diameters determined for e-cigarettes by the electrical mobility method are in the 50 nm range and total particulate masses calculated based on the suggested diameters are orders of magnitude smaller than those determined gravimetrically. This latter discrepancy, and the very small particle diameters observed, are believed to result from almost complete e-cigarette aerosol particle evaporation at the dilution levels and conditions of the electrical mobility analysis. A much smaller degree, ~20% by mass, of apparent particle evaporation was observed for tobacco burning cigarette smoke. The spectral transmission method is validated in the current study against measurements on tobacco burning cigarette smoke, which has been well characterized in prior studies, and is supported as yielding an accurate characterization of the e-cigarette aerosol particle size distribution.


Assuntos
Abandono do Hábito de Fumar/métodos , Prevenção do Hábito de Fumar , Dispositivos para o Abandono do Uso de Tabaco , Aerossóis , Eletrônica , Desenho de Equipamento , Tecnologia de Fibra Óptica , Humanos , Exposição por Inalação , Tamanho da Partícula , Reprodutibilidade dos Testes , Fumaça/análise , Espectrofotometria , Nicotiana , Volatilização
2.
J Occup Environ Hyg ; 5(11): 713-20, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18726819

RESUMO

High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally, increased emission of ultrafine particles is seemingly negligible.


Assuntos
Aerossóis/isolamento & purificação , Poluição do Ar/prevenção & controle , Filtração/métodos , Movimentos do Ar , Poluentes Radioativos do Ar/isolamento & purificação , Desenho de Equipamento , Filtração/instrumentação , Filtração/normas , Tamanho da Partícula
3.
Rev Sci Instrum ; 78(8): 085105, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17764353

RESUMO

This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.


Assuntos
Aerossóis/química , Aerossóis/isolamento & purificação , Análise de Falha de Equipamento/instrumentação , Análise de Injeção de Fluxo/instrumentação , Reologia/instrumentação , Ultrafiltração/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Análise de Injeção de Fluxo/métodos , Tamanho da Partícula , Reprodutibilidade dos Testes , Reologia/métodos , Sensibilidade e Especificidade
4.
Environ Sci Technol ; 39(19): 7396-401, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16245807

RESUMO

The surface-mediated reactions of 2-chlorophenol, 1,2-dichlorobenzene, and chlorobenzene were studied using CuO/ SiO2 as a fly ash surrogate. These compounds served as model precursors that have been implicated in the formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). With FTIR, we determined that reactions of the model precursors with a substrate composed of CuO dispersed on silica result in the formation of a mixture of surface-bound phenolate and carboxylate partial oxidation products from 200 to 500 degrees C. Chemisorption of 2-chlorophenol and 1,2-dichlorobenzene resulted in the formation of identical surface-bound species. Using X-ray absorption near-edge structure spectroscopy, we measured the time- and temperature-dependent reduction of Cu(II) in a fly ash surrogate during reaction with each precursor. It was demonstrated that CuI2O is the major reduction product in each case. The rate of Cu(II) reduction could be described using pseudo-first-order reaction kinetics with Arrhenius activation energies for reduction of Cu(II) of 112, 101, and 88 kJ mol(-1) for 2-chlorophenol, 1,2-dichlorobenzene, and chlorobenzene, respectively. We demonstrate that chlorinated phenol and chlorinated benzene both chemisorb to form chlorophenolate. Although chlorinated phenols chemisorb at a faster rate, chlorinated benzenes are found at much higher concentrations in incinerator effluents. The implication is that chlorinated benzenes may form 10 times more chlorophenolate precursors to PCDD/Fs than chlorinated phenols in combustion systems.


Assuntos
Carbono/química , Clorobenzenos/química , Clorofenóis/química , Cobre/química , Dióxido de Silício/química , Adsorção , Cinza de Carvão , Cinética , Material Particulado , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
5.
J Phys Chem A ; 109(34): 7725-31, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16834148

RESUMO

The time-dependent chemisorption of 2-chlorophenol on a fumed silica surface was studied in situ from 200 to 500 degrees C using a temperature-controlled dosing cell and FTIR absorption spectroscopy. 2-Chlorophenol was found to chemisorb at isolated and geminal surface hydroxyl sites. 2-Chlorophenol chemisorption and subsequent surface oxidation resulted in a mixture of chlorophenolate and partial oxidation products, such as formates and acetates. The rates of chemisorption were measured, and the activation energy of adsorption was found to be 15 +/- 4 kJ mol(-1) for a fast, initial reaction and 22 +/- 2 kJ mol(-1) for a slower reaction at higher surface coverage. This work was motivated by the observation that combustion-generated fly ash mediates the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) at temperatures between 250 and 450 degrees C. Although transition metals such as copper are known to catalyze or mediate this reaction, silica is the major component of fly ash and chemisorption at higher concentration surface sites of silica must have a significant impact on the surface-mediated PCDD/F formation on fly ash surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA