Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 41(12): 7995-8008, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25192890

RESUMO

Drought is one of the major abiotic stresses that affect productivity in soybean (Glycine max L.) Several genes induced by drought stress include functional genes and regulatory transcription factors. The Arabidopsis thaliana DREB1D transcription factor driven by the constitutive and ABA-inducible promoters was introduced into soybean through Agrobacterium tumefaciens-mediated gene transfer. Several transgenic lines were generated and molecular analysis was performed to confirm transgene integration. Transgenic plants with an ABA-inducible promoter showed a 1.5- to two-fold increase of transgene expression under severe stress conditions. Under well-watered conditions, transgenic plants with constitutive and ABA-inducible promoters showed reduced total leaf area and shoot biomass compared to non-transgenic plants. No significant differences in root length or root biomass were observed between transgenic and non-transgenic plants under non-stress conditions. When subjected to gradual water deficit, transgenic plants maintained higher relative water content because the transgenic lines used water more slowly as a result of reduced total leaf area. This caused them to wilt slower than non-transgenic plants. Transgenic plants showed differential drought tolerance responses with a significantly higher survival rate compared to non-transgenic plants when subjected to comparable severe water-deficit conditions. Moreover, the transgenic plants also showed improved drought tolerance by maintaining 17-24 % greater leaf cell membrane stability compared to non-transgenic plants. The results demonstrate the feasibility of engineering soybean for enhanced drought tolerance by expressing stress-responsive genes.


Assuntos
Proteínas de Arabidopsis/genética , Secas , Glycine max/fisiologia , Transativadores/genética , Adaptação Fisiológica/genética , Arabidopsis/genética , Plantas Geneticamente Modificadas/fisiologia , Glycine max/genética , Transgenes/genética , Regulação para Cima
2.
PLoS One ; 7(9): e46487, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029532

RESUMO

Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid) treatments using delta CT and geNorm approaches. Validation of reference genes indicated that the best reference genes are tissue- and stress-dependent. With respect to dehydration treatment, the Fbox/ABC, Fbox/60s gene pairs were found to have the highest expression stability in the root and shoot tissues of soybean seedlings, respectively. Fbox and 60s genes are the most suitable reference genes across dehydrated root and shoot tissues. Under salt stress the ELF1b/IDE and Fbox/ELF1b are the most stably expressed gene pairs in roots and shoots, respectively, while 60s/Fbox is the best gene pair in both tissues. For studying cold stress in roots or shoots, IDE/60s and Fbox/Act27 are good reference gene pairs, respectively. With regard to gene expression analysis under ABA treatment in either roots, shoots or across these tissues, 60s/ELF1b, ELF1b/Fbox and 60s/ELF1b are the most suitable reference genes, respectively. The expression of ELF1b/60s, 60s/Fbox and 60s/Fbox genes was most stable in roots, shoots and both tissues, respectively, under various stresses studied. Among the genes tested, 60s was found to be the best reference gene in different tissues and under various stress conditions. The highly ranked reference genes identified from this study were proved to be capable of detecting subtle differences in expression rates that otherwise would be missed if a less stable reference gene was used.


Assuntos
Glycine max/genética , Raízes de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Estresse Fisiológico , Ácido Abscísico/farmacologia , Ácido Abscísico/fisiologia , Sequência de Bases , Resposta ao Choque Frio , Primers do DNA/genética , Desidratação/genética , Desidratação/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Padrões de Referência , Tolerância ao Sal , Glycine max/metabolismo , Glycine max/fisiologia , Transcrição Gênica
3.
Plant Cell Physiol ; 51(6): 936-48, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20430761

RESUMO

Numerous environmental factors influence isoflavone accumulation and have long hampered their genetic dissection. Temperature and water regimes are two of the most significant abiotic factors. However, while the effects of temperature have been widely studied, little is known about how water scarcity might affect isoflavone concentration in seeds. Studies have shown that accumulation of isoflavones is promoted by well-watered conditions, but the molecular basis remains elusive. The length and severity of the water stress required to induce changes are also still unknown. In the present work, several intensities of water stress were evaluated at various critical stages for soybean [Glycine max (L.) Merr.] seed development, in both field and controlled environments. The results suggested that only long-term progressive drought, spanning most of the seed developmental stages, significantly decreased isoflavone content in seeds. The reduction is proportional to the intensity of the stress and appears to occur in a genotype-dependent manner. However, regardless of water regime, isoflavone compounds were mainly accumulated in the later seed developmental stages. Transcripts of the most important genes for isoflavone biosynthesis were also quantified from samples collected at key seed developmental stages under well-watered and long-term water deficit conditions. Expression of CHS7, CHS8 and IFS2 correlated with isoflavone accumulation under well-watered conditions. Interestingly, we found that the two isoflavone synthase genes in soybean (IFS1 and IFS2) showed different patterns of expression. The abundance of IFS1 transcripts was maintained at a constant rate, whereas IFS2 was down-regulated and highly correlated with isoflavone accumulation under both water deficit and well-watered conditions, suggesting IFS2 as a main contributor to isoflavone diminution under drought.


Assuntos
Glycine max/genética , Isoflavonas/biossíntese , Oxigenases/metabolismo , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Água/metabolismo , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oxigenases/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Sementes/genética , Sementes/metabolismo , Solo/análise , Glycine max/enzimologia , Estresse Fisiológico
4.
Mol Genet Genomics ; 281(6): 647-64, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19277718

RESUMO

Drought is detrimental to plant growth and development, and often results in significant losses to the yields of economically important crops such as soybeans (Glycine max L.). NAC transcription factors (TFs), which consist of a large family of plant-specific TFs, have been reported to enhance drought tolerance in a number of plants. In this study, 31 unigenes that contain the complete open reading frames encoding GmNAC proteins were identified and cloned from soybean. Analysis of C-terminal regulatory domain using yeast one-hybrid system indicated that among 31 GmNAC proteins, 28 have transcriptional activation activity. Expression analysis of these GmNAC genes showed that they are differentially expressed in different organs, suggesting that they have diverse functions during plant growth and development. To search for the drought-inducible GmNAC genes, we prescreened and re-confirmed by quantitative real-time PCR analysis that nine GmNAC genes are induced by dehydration stress with differential induction levels in both shoot and root. The expression profiles of these nine GmNAC genes were also examined under other stresses such as high salinity, cold and with abscisic acid hormone treatments. Phylogenetic analysis of the GmNAC proteins with previously reported drought-inducible NAC proteins of Arabidopsis and rice revealed that the nine drought-inducible GmNAC proteins belong to the "stress-inducible" NAC group. The results of this systematic analysis of the GmNAC family will provide novel tools and resources for the development of improved drought tolerant transgenic soybean cultivars.


Assuntos
Glycine max/genética , Glycine max/metabolismo , Fatores de Transcrição/genética , Ácido Abscísico/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Desidratação , Secas , Genes de Plantas , Modelos Genéticos , Dados de Sequência Molecular , Oligonucleotídeos/química , Fases de Leitura Aberta , Filogenia , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA