Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 631254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584631

RESUMO

Elderly people are an important part of the global population who suffer from the natural processes of senescence, which lead to changes in the gut microbiota composition. These modifications have a great impact on their quality of life, bringing a general putrefactive and inflammatory status as a consequence. Some of the most frequent conditions related to this status are constipation, undernutrition, neurodegenerative diseases, susceptibility to opportunistic pathogens, and metabolic disbalance, among others. For these reasons, there is an increasing interest in improving their quality of life by non-invasive treatments such as the consumption of probiotics, prebiotics, and synbiotics. The aim of the present mini-review is to describe the benefits of these functional supplements/food according to the most recent clinical and pre-clinical studies published during the last decade. In addition, insights into several aspects we consider relevant to improve the quality of future studies are provided.

2.
Food Microbiol ; 90: 103465, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336376

RESUMO

Exopolysaccharides (EPS) production is a characteristic that has been widely described for many lactic acid bacteria (LAB) of different genera and species, but little is known about the relationship between the functional properties of the producing bacteria and EPS synthesis. Although many studies were addressed towards the application of EPS-producing LAB in the manufacture of several dairy products (fermented milk, cheese) due to their interesting technological properties (increased hardness, water holding capacity, viscosity, etc.), there are not many reports about the functional properties of the EPS extract itself, especially for the genus Lactobacillus. The aim of the present revision is to focus on the species Lactobacillus fermentum with reported functional properties, with particular emphasis on those strains capable of producing EPS, and try to establish if there is any linkage between this property and their functional/probiotic roles, considering the most recent bibliography.


Assuntos
Produtos Fermentados do Leite/microbiologia , Microbiologia de Alimentos , Limosilactobacillus fermentum/fisiologia , Polissacarídeos Bacterianos/biossíntese , Animais , Antibiose , Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Fermentação , Fatores Imunológicos , Limosilactobacillus fermentum/química , Probióticos/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-30533779

RESUMO

Lactobacillus fermentum Lf2, an Argentine cheese isolate, can produce high concentrations of exopolysaccharides (EPS). These EPS were shown to improve the texture and rheology of yogurt, as well as to play a protective role in mice exposed to Salmonella enterica serovar Typhimurium. Three gene clusters potentially involved in EPS production were identified in different locations of the L. fermentum Lf2 genome.

4.
J Dairy Res ; 83(4): 487-492, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27845020

RESUMO

Lactobacillus fermentum Lf2 is a strain which is able to produce high levels (approximately 1 g/l) of crude exopolysaccharide (EPS) when it is grown in optimised conditions. The aim of this work was to characterize the functional aspects of this EPS extract, focusing on its application as a dairy food additive. Our findings are consistent with an EPS extract that acts as moderate immunomodulator, modifying s-IgA and IL-6 levels in the small intestine when added to yogurt and milk, respectively. Furthermore, this EPS extract, in a dose feasible to use as a food additive, provides protection against Salmonella infection in a murine model, thus representing a mode of action to elicit positive health benefits. Besides, it contributes to the rheological characteristics of yogurt, and could function as a food additive with both technological and functional roles, making possible the production of a new functional yogurt with improved texture.


Assuntos
Aditivos Alimentares , Alimento Funcional , Limosilactobacillus fermentum/química , Polissacarídeos Bacterianos/administração & dosagem , Polissacarídeos Bacterianos/fisiologia , Iogurte/análise , Animais , Imunoglobulina A Secretora/análise , Fatores Imunológicos , Interleucina-6/análise , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Camundongos , Leite/química , Reologia , Infecções por Salmonella/prevenção & controle
5.
Food Res Int ; 90: 259-267, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29195880

RESUMO

Lactobacillus fermentum Lf2, an autochthonous strain isolated as a non starter culture in Cremoso cheese, produces high EPS levels (~1g/L) in optimized conditions (SDM broth, pH6.0, 30°C, 72h). Technological (texture profile and rheological analysis) and sensory properties of non-fat yogurts with 300 and 600mg EPS/L were studied at 3 and 25days after manufacture. Yogurts with different EPS concentrations showed higher hardness values than the control group at both periods of time, being the only significant difference that remained stable during time. The consistency index was also higher for the treated samples at both times evaluated, being significantly different for samples with 300mg/L of EPS extract, while the flow behavior index was lower for EPS-added yogurts. The thixotropic index was lower (P<0.05) for samples with the highest EPS extract concentration at the end of the storage time. Regarding the sensory analysis, those yogurts with 600mg/L of EPS extract presented the highest values of consistency at 3days of storage. No considerable differences for defects (milk powder, acid, bitter and cooked milk flavors) were perceived between treated and control samples at both times evaluated. Syneresis was also studied and samples with 600mg/L of EPS extract presented the lowest syneresis values at 25days of storage, which considerably decreased with the time of storage. In conclusion, the EPS from L. fermentum Lf2, used as an additive, provided yogurt with creamy consistency and increased hardness, without the presence of unwanted defects and improving the water holding capacity of the product. All the analysis done showed the potential of this extract to be used as a technofunctional natural ingredient, and it should be considered its positive impact on health, according to previous studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA