Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 13: 956602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267176

RESUMO

The establishment of Mycobacterium tuberculosis (Mtb) long-term infection in vivo depends on several factors, one of which is the availability of key nutrients such as iron (Fe). The relation between Fe deprivation inside and outside the granuloma, and the capacity of Mtb to accumulate lipids and persist in the absence of growth is not well understood. In this context, current knowledge of how Mtb modifies its lipid composition in response to growth arrest, depending on iron availability, is scarce. To shed light on these matters, in this work we compare genome-wide transcriptomic and lipidomic profiles of Mtb at exponential and stationary growth phases using cultures with glycerol as a carbon source, in the presence or absence of iron. As a result, we found that transcriptomic responses to growth arrest, considered as the transition from exponential to stationary phase, are iron dependent for as many as 714 genes (iron-growth interaction contrast, FDR <0.05), and that, in a majority of these genes, iron deprivation enhances the magnitude of the transcriptional responses to growth arrest in either direction. On the one hand, genes whose upregulation upon growth arrest is enhanced by iron deprivation were enriched in functional terms related to homeostasis of ion metals, and responses to several stressful cues considered cardinal features of the intracellular environment. On the other hand, genes showing negative responses to growth arrest that are stronger in iron-poor medium were enriched in energy production processes (TCA cycle, NADH dehydrogenation and cellular respiration), and key controllers of ribosomal activity shut-down, such as the T/A system mazE6/F6. Despite of these findings, a main component of the cell envelope, lipid phthiocerol dimycocerosate (PDIM), was not detected in the stationary phase regardless of iron availability, suggesting that lipid changes during Mtb adaptation to non-dividing phenotypes appear to be iron-independent. Taken together, our results indicate that environmental iron levels act as a key modulator of the intensity of the transcriptional adaptations that take place in the bacterium upon its transition between dividing and dormant-like phenotypes in vitro.

3.
Front Med (Lausanne) ; 9: 965359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072954

RESUMO

Tuberculosis (TB) is a global disease caused by Mycobacterium tuberculosis (Mtb) and is manifested as a continuum spectrum of infectious states. Both, the most common and clinically asymptomatic latent tuberculosis infection (LTBI), and the symptomatic disease, active tuberculosis (TB), are at opposite ends of the spectrum. Such binary classification is insufficient to describe the existing clinical heterogeneity, which includes incipient and subclinical TB. The absence of clinically TB-related symptoms and the extremely low bacterial burden are features shared by LTBI, incipient and subclinical TB states. In addition, diagnosis relies on cytokine release after antigenic T cell stimulation, yet several studies have shown that a high proportion of individuals with immunoreactivity never developed disease, suggesting that they were no longer infected. LTBI is estimated to affect to approximately one fourth of the human population and, according to WHO data, reactivation of LTBI is the main responsible of TB cases in developed countries. Assuming the drawbacks associated to the current diagnostic tests at this part of the disease spectrum, properly assessing individuals at real risk of developing TB is a major need. Further, it would help to efficiently design preventive treatment. This quest would be achievable if information about bacterial viability during human silent Mtb infection could be determined. Here, we have evaluated the feasibility of new approaches to detect viable bacilli across the full spectrum of TB disease. We focused on methods that specifically can measure host-independent parameters relying on the viability of Mtb either by its direct or indirect detection.

4.
Front Microbiol ; 13: 907296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814710

RESUMO

Tuberculosis (TB) still represents a major global health problem affecting over 10 million people worldwide. The gold-standard procedures for TB diagnosis are culture and nucleic acid amplification techniques. In this context, both lipoarabinomannan (LAM) urine test and rapid molecular tests have been major game changers. However, the low sensitivity of the former and the cost and the prohibitive infrastructure requirements to scale-up in endemic regions of the latter, make the improvement of the TB diagnostic landscape a priority. Most forms of life produce extracellular vesicles (EVs), including bacteria despite differences in bacterial cell envelope architecture. We demonstrated that Mycobacterium tuberculosis (Mtb), the causative agent of TB, produces EVs in vitro and in vivo as part of a sophisticated mechanism to manipulate host cellular physiology and to evade the host immune system. In a previous serology study, we showed that the recognition of several mycobacterial extracellular vesicles (MEV) associated proteins could have diagnostic properties. In this study, we pursued to expand the capabilities of MEVs in the context of TB diagnostics by analyzing the composition of MEVs isolated from Mtb cultures submitted to iron starvation and, testing their immunogenicity against a new cohort of serum samples derived from TB+ patients, latent TB-infected (LTBI) patients and healthy donors. We found that despite the stringent condition imposed by iron starvation, Mtb reduces the number of MEV associated proteins relative to iron sufficient conditions. In addition, TB serology revealed three new MEV antigens with specific biomarker capacity. These results suggest the feasibility of developing a point-of-care (POC) device based on selected MEV-associated proteins.

5.
J Bacteriol ; 203(7)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33468587

RESUMO

Mycobacterium tuberculosis comprises an unusual cell envelope dominated by unique lipids and glycans that provides a permeability barrier against hydrophilic drugs and is central for its survival and virulence. Phosphatidyl-myo-inositol mannosides (PIMs) are glycolipids considered to be not only key structural components of the cell envelope but also the precursors of lipomannan (LM) and lipoarabinomannan (LAM), important lipoglycans implicated in host-pathogen interactions. Here, we focus on PatA, a membrane-associated acyltransferase that transfers a palmitoyl moiety from palmitoyl coenzyme A (palmitoyl-CoA) to the 6-position of the mannose ring linked to the 2-position of inositol in PIM1/PIM2 We validate that the function of PatA is vital for M. tuberculosisin vitro and in vivo We constructed a patA conditional mutant and showed that silencing patA is bactericidal in batch cultures. This phenotype was associated with significantly reduced levels of Ac1PIM2, an important structural component of the mycobacterial inner membrane. The requirement of PatA for viability was also demonstrated during macrophage infection and in a mouse model of infection, where a dramatic decrease in viable counts was observed upon silencing of the patA gene. This is reminiscent of the behavior of PimA, the mannosyltransferase that initiates the PIM pathway, also found to be essential for M. tuberculosis growth in vitro and in vivo Altogether, the experimental data highlight the significance of the early steps of the PIM biosynthetic pathway for M. tuberculosis physiology and reveal that PatA is a novel target for drug discovery programs against this major human pathogen.IMPORTANCE Tuberculosis (TB) is the leading cause of death from a single infectious agent. The emergence of drug resistance in strains of M. tuberculosis, the etiologic agent of TB, emphasizes the need to identify new targets and antimicrobial agents. The mycobacterial cell envelope is a major factor in this intrinsic drug resistance. Here, we have focused on the biosynthesis of PIMs, key virulence factors and important components of the cell envelope. Specifically, we have determined that PatA, the acyltransferase responsible for the first acylation step of the PIM synthesis pathway, is essential in M. tuberculosis These results highlight the importance of early steps of the PIM biosynthetic pathway for mycobacterial physiology and the suitability of PatA as a potential new drug target.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Fosfatidilinositóis/metabolismo , Tuberculose/microbiologia , Aciltransferases/química , Aciltransferases/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Feminino , Humanos , Macrófagos/microbiologia , Manosiltransferases/genética , Manosiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Fosfatidilinositóis/química
6.
Iran J Public Health ; 49(2): 369-376, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32461945

RESUMO

BACKGROUND: After cellulose, chitin is one of the most important polymers in crustaceans, insects, and fungi. Chitosan is one of the most important derivatives of chitin, which has important characteristics including degradability, non-toxicity, and biocompatibility antimicrobial and antioxidant properties. METHODS: Chitosan was extracted from Penaeus semisulcatus shrimp using chemical methods and the degree of its austenitization was determined using a sub-red spectrophotometer and XRD. The nanoparticles were then synthesized using the ionic gelation method and analyzed through SEM. The antimicrobial effects of nanoparticles were also evaluated using antimicrobial tests on Listeria monocytogenes and Salmonella typhi. RESULTS: Nanoparticles have antimicrobial activity and can inhibit bacterial growth at different concentrations. CONCLUSION: Chitosan nanoparticles have an inhibitory effect on Listeria monocytogenes, which is a gram-positive bacterium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...