Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730608

RESUMO

Retinoblastoma (RB) is the most common malignant intraocular tumor in early childhood. Gene expression profiling revealed that the gastric inhibitory polypeptide receptor (GIPR) is upregulated following trefoil factor family peptide 1 (TFF1) overexpression in RB cells. In the study presented, we found this G protein-coupled transmembrane receptor to be co-expressed with TFF1, a new diagnostic and prognostic RB biomarker for advanced subtype 2 RBs. Functional analyses in two RB cell lines revealed a significant reduction in cell viability and growth and a concomitant increase in apoptosis following stable, lentiviral GIPR overexpression, matching the effects seen after TFF1 overexpression. In chicken chorioallantoic membrane (CAM) assays, GIPR-overexpressing RB cells developed significantly smaller CAM tumors. The effect of GIPR overexpression in RB cells was reversed by the GIPR inhibitor MK0893. The administration of recombinant TFF1 did not augment GIPR overexpression effects, suggesting that GIPR does not serve as a TFF1 receptor. Investigations of potential GIPR up- and downstream mediators suggest the involvement of miR-542-5p and p53 in GIPR signaling. Our results indicate a tumor suppressor role of GIPR in RB, suggesting its pathway as a new potential target for future retinoblastoma therapy.

2.
Cancers (Basel) ; 15(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37835522

RESUMO

Effective management of retinoblastoma (RB), the most prevalent childhood eye cancer, depends on reliable monitoring and diagnosis. A promising candidate in this context is the secreted trefoil family factor peptide 1 (TFF1), recently discovered as a promising new biomarker in patients with a more advanced subtype of retinoblastoma. The present study investigated TFF1 expression within aqueous humor (AH) of enucleated eyes and compared TFF1 levels in AH and corresponding blood serum samples from RB patients undergoing intravitreal chemotherapy (IVC). TFF1 was consistently detectable in AH, confirming its potential as a biomarker. Crucially, our data confirmed that TFF1-secreting cells within the tumor mass originate from RB tumor cells, not from surrounding stromal cells. IVC-therapy-responsive patients exhibited remarkably reduced TFF1 levels post-therapy. By contrast, RB patients' blood serum displayed low-to-undetectable levels of TFF1 even after sample concentration and no therapy-dependent changes were observed. Our findings suggest that compared with blood serum, AH represents the more reliable source of TFF1 if used for liquid biopsy RB marker analysis in RB patients. Thus, analysis of TFF1 in AH of RB patients potentially provides a minimally invasive tool for monitoring RB therapy efficacy, suggesting its importance for effective treatment regimens.

3.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293469

RESUMO

A disintegrin and metalloproteinase (ADAM) family proteins, acting as sheddases, are important factors in a number of pathologies, including cancer, and have been suggested as promising therapeutic targets. The study presented focuses on the involvement of ADAM10 and ADAM17 in retinoblastoma (RB), the most common malignant intraocular childhood tumor. A significant correlation between ADAM17 expression levels and RB laterality and RB staging was observed. Levels of ADAM10 or ADAM17 regulating miRNAs miR-145, -152, and -365 were significantly downregulated in RB cell lines, and reduced miR levels with simultaneously upregulated ADAM10 and ADAM17 expression were found in RB patients. The involvement of both ADAMs analyzed in ectodomain shedding of the neuronal cell adhesion molecule L1 (L1CAM), shown to induce pro-tumorigenic effects in RB, was confirmed. Lentiviral ADAM10 and ADAM17 single or ADAM10/17 double knockdown (KD) induced caspase-dependent apoptosis and reduced cell viability, proliferation, growth, and colony formation capacity of RB cells. Moreover, differential phosphorylation of the serine/threonine kinase AKT was observed following ADAM17 KD in RB cells. Chicken chorioallantoic membrane (CAM) assays revealed that ADAM17 and ADAM10/17 depletion decreases the tumorigenic and migration potential of RB cells in vivo. Thus, ADAMs are potential novel targets for future therapeutic RB approaches.


Assuntos
MicroRNAs , Molécula L1 de Adesão de Célula Nervosa , Neoplasias da Retina , Retinoblastoma , Humanos , Desintegrinas , Retinoblastoma/genética , Proteínas Proto-Oncogênicas c-akt , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , MicroRNAs/genética , Carcinogênese/genética , Serina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA