Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 7(7): 2779-2790, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38606034

RESUMO

An increasing number of studies focus on organic flow batteries (OFBs) as possible substitutes for the vanadium flow battery (VFB), featuring anthraquinone derivatives, such as anthraquinone-2,7-disulfonic acid (2,7-AQDS). VFBs have been postulated as a promising energy storage technology. However, the fluctuating cost of vanadium minerals and risky supply chains have hampered their implementation, while OFBs could be prepared from renewable raw materials. A critical component of flow batteries is the electrode material, which can determine the power density and energy efficiency. Yet, and in contrast to VFBs, studies on electrodes tailored for OFBs are scarce. Hence, in this work, we propose the modification of commercial carbon felts with reduced graphene oxide (rGO) and poly(ethylene glycol) for the 2,7-AQDS redox couple and to preliminarily assess its effects on the efficiency of a 2,7-AQDS/ferrocyanide flow battery. Results are compared to those of a VFB to evaluate if the benefits of the modification are transferable to OFBs. The modification of carbon felts with surface oxygen groups introduced by the presence of rGO enhanced both its hydrophilicity and surface area, favoring the catalytic activity toward VFB and OFB reactions. The results are promising, given the improved behavior of the modified electrodes. Parallels are established between the electrodes of both FB technologies.

2.
Nanomaterials (Basel) ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202469

RESUMO

Atomically dispersed Fe-N-C catalysts for the oxygen reduction reaction (ORR) have been synthesized with a template-free method using carbon xerogels (CXG) as a porous matrix. The porosity of the CXGs is easily tunable through slight variations in the synthesis procedure. In this work, CXGs are prepared by formaldehyde and resorcinol polymerization, modifying the pH during the process. Materials with a broad range of porous structures are obtained: from non-porous to micro-/meso-/macroporous materials. The porous properties of CXG have a direct effect on Fe-N-CXG activity against ORR in an acidic medium (0.5 M H2SO4). Macropores and wide mesopores are vital to favor the mass transport of reagents to the active sites available in the micropores, while narrower mesopores can generate additional tortuosity. The role of microporosity is investigated by comparing two Fe-N-C catalysts using the same CXG as the matrix but following a different Fe and N doping procedure. In one case, the carbonization of CXG occurs rapidly and simultaneously with Fe and N doping, whereas in the other case it proceeds slowly, under controlled conditions and before the doping process, resulting in the formation of more micropores and active sites and achieving higher activity in a three-electrode cell and a better durability during fuel cell measurements. This work proves the feasibility of the template-free method using CXG as a carbon matrix for Fe-N-C catalysts, with the novelty of the controlled porous properties of the carbon material and its effect on the catalytic activity of the Fe-N-C catalyst. Moreover, the results obtained highlight the importance of the carbon matrix's porous structure in influencing the activity of Fe-N-C catalysts against ORR.

3.
Materials (Basel) ; 10(9)2017 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-28926984

RESUMO

Durability and limited catalytic activity are key impediments to the commercialization of polymer electrolyte fuel cells. Carbon materials employed as catalyst support can be doped with different heteroatoms, like nitrogen, to improve both catalytic activity and durability. Carbon xerogels are nanoporous carbons that can be easily synthesized in order to obtain N-doped materials. In the present work, we introduced melamine as a carbon xerogel precursor together with resorcinol for an effective in-situ N doping (3-4 wt % N). Pt nanoparticles were supported on nitrogen-doped carbon xerogels and their activity for the oxygen reduction reaction (ORR) was evaluated in acid media along with their stability. Results provide new evidences of the type of N groups aiding the activity of Pt for the ORR and of a remarkable stability for N-doped carbon-supported Pt catalysts, providing appropriate physico-chemical features.

4.
Materials (Basel) ; 8(12): 7997-8008, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-28793693

RESUMO

Next generation cathode catalysts for direct methanol fuel cells (DMFCs) must have high catalytic activity for the oxygen reduction reaction (ORR), a lower cost than benchmark Pt catalysts, and high stability and high tolerance to permeated methanol. In this study, palladium catalysts supported on titanium suboxides (Pd/TinO2n-1) were prepared by the sulphite complex route. The aim was to improve methanol tolerance and lower the cost associated with the noble metal while enhancing the stability through the use of titanium-based support; 30% Pd/Ketjenblack (Pd/KB) and 30% Pd/Vulcan (Pd/Vul) were also synthesized for comparison, using the same methodology. The catalysts were ex-situ characterized by physico-chemical analysis and investigated for the ORR to evaluate their activity, stability, and methanol tolerance properties. The Pd/KB catalyst showed the highest activity towards the ORR in perchloric acid solution. All Pd-based catalysts showed suitable tolerance to methanol poisoning, leading to higher ORR activity than a benchmark Pt/C catalyst in the presence of low methanol concentration. Among them, the Pd/TinO2n-1 catalyst showed a very promising stability compared to carbon-supported Pd samples in an accelerated degradation test of 1000 potential cycles. These results indicate good perspectives for the application of Pd/TinO2n-1 catalysts in DMFC cathodes.

5.
Chempluschem ; 80(9): 1384-1388, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31973352

RESUMO

Carbon nanofibers are investigated as a support for Pd catalysts. The electrochemical behavior of these catalysts for both the oxygen reduction and oxygen evolution reactions is investigated in a half-cell configuration in alkaline solution (6 M KOH) at room temperature. The catalysts are compared with an internal benchmark consisting of Pd supported on Vulcan. Stress tests are also performed to assess the stability of the catalysts under the highly corrosive conditions occurring at the positive electrode, especially during oxygen evolution (high potential). Pd catalysts supported on carbon nanofibers show promising stability characteristics for applications as bifunctional oxygen catalysts in metal-air batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...