Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 24(1): 88, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482488

RESUMO

BACKGROUND: Up to 40% of patients with estrogen receptor-positive (ER+) breast cancer experience relapse. This can be attributed to breast cancer stem cells (BCSCs), which are known to be involved in therapy resistance, relapse, and metastasis. Therefore, there is an urgent need to identify genes/pathways that drive stem-like cell properties in ER+ breast tumors. METHODS: Using single-cell RNA sequencing and various bioinformatics approaches, we identified a unique stem-like population and established its clinical relevance. With follow-up studies, we validated our bioinformatics findings and confirmed the role of ER and NFĸB in the promotion of stem-like properties in breast cancer cell lines and patient-derived models. RESULTS: We identified a novel quiescent stem-like cell population that is driven by ER and NFĸB in multiple ER+ breast cancer models. Moreover, we found that a gene signature derived from this stem-like population is expressed in primary ER+ breast tumors, endocrine therapy-resistant and metastatic cell populations and predictive of poor patient outcome. CONCLUSIONS: These findings indicate a novel role for ER and NFĸB crosstalk in BCSCs biology and understanding the mechanism by which these pathways promote stem properties can be exploited to improve outcomes for ER+ breast cancer patients at risk of relapse.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Humanos , Feminino , Antineoplásicos Hormonais/uso terapêutico , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Células MCF-7 , Neoplasias Mamárias Animais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Cancers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740514

RESUMO

Most metastatic breast cancers arise from estrogen receptor α (ER)-positive disease, and yet the role of ER in promoting metastasis is unclear. Here, we used an ER+ breast cancer cell line that is highly invasive in an ER- and IKKß-dependent manner. We defined two ER-regulated gene signatures that are specifically regulated in the subpopulations of invasive cells. The first consists of proliferation-associated genes, which is a known function of ER, which actually suppress rather than enhance invasion. The second signature consists of genes involved in essential biological processes, such as organelle assembly and vesicle trafficking. Importantly, the second subpopulation-specific signature is associated with aggressive disease and poor patient outcome, independently of proliferation. These findings indicate a complex interplay between ER-driven proliferation and invasion, and they define new ER-regulated gene signatures that are predictive of aggressive ER+ breast cancer.

3.
Mol Cancer Res ; 18(7): 1018-1027, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32245803

RESUMO

The purpose of this study was to identify critical pathways promoting survival of tamoxifen-tolerant, estrogen receptor α positive (ER+) breast cancer cells, which contribute to therapy resistance and disease recurrence. Gene expression profiling and pathway analysis were performed in ER+ breast tumors of patients before and after neoadjuvant tamoxifen treatment and demonstrated activation of the NF-κB pathway and an enrichment of epithelial-to mesenchymal transition (EMT)/stemness features. Exposure of ER+ breast cancer cell lines to tamoxifen, in vitro and in vivo, gives rise to a tamoxifen-tolerant population with similar NF-κB activity and EMT/stemness characteristics. Small-molecule inhibitors and CRISPR/Cas9 knockout were used to assess the role of the NF-κB pathway and demonstrated that survival of tamoxifen-tolerant cells requires NF-κB activity. Moreover, this pathway was essential for tumor recurrence following tamoxifen withdrawal. These findings establish that elevated NF-κB activity is observed in breast cancer cell lines under selective pressure with tamoxifen in vitro and in vivo, as well as in patient tumors treated with neoadjuvant tamoxifen therapy. This pathway is essential for survival and regrowth of tamoxifen-tolerant cells, and, as such, NF-κB inhibition offers a promising approach to prevent recurrence of ER+ tumors following tamoxifen exposure. IMPLICATIONS: Understanding initial changes that enable survival of tamoxifen-tolerant cells, as mediated by NF-κB pathway, may translate into therapeutic interventions to prevent resistance and relapse, which remain major causes of breast cancer lethality.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Recidiva Local de Neoplasia/patologia , Tamoxifeno/administração & dosagem , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , NF-kappa B/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Transplante de Neoplasias , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia
4.
Horm Cancer ; 11(2): 76-86, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32008217

RESUMO

There is a desperate need in the field for mouse mammary tumors and cell lines that faithfully mimic estrogen receptor (ER) expression and activity found in human breast cancers. We found that several mouse mammary cancer cell lines express ER but fail to demonstrate classical estrogen-driven proliferation or transcriptional activity. We investigated whether these cell lines may be used to model tamoxifen resistance by using small molecule inhibitors to signaling pathways known to contribute to resistance. We found that the combination of NFκB inhibition and ER antagonists significantly reduced cell proliferation in vitro, as well as growth of syngeneic tumors. Surprisingly, we found that ER was localized to the cytoplasm, regardless of any type of treatment. Based on this, we probed extra-nuclear functions of ER and found that co-inhibition of ER and NFκB led to an increase in oxidative stress and apoptosis. Together, these findings suggest that cytoplasmic ER and NFκB may play redundant roles in protecting mammary cancer cells from oxidative stress and cell death. Although this study has not identified a mouse model with classical ER activity, cytoplasmic ER has been described in a small subset of human breast tumors, suggesting that these findings may be relevant for some breast cancer patients.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , NF-kappa B/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Citoplasma/metabolismo , Fumarato de Dimetilo/farmacologia , Modelos Animais de Doenças , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , NF-kappa B/antagonistas & inibidores , Estresse Oxidativo/fisiologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...