Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Microbiol ; 47(1): 1-14, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700878

RESUMO

Antibiotics are designed to effectively treat bacterial infections while minimizing harm to the human body. They work by targeting specific components of bacteria or by disrupting essential processes such as cell wall synthesis, membrane function, protein production, and metabolic pathways. However, the misuse and overuse of antibiotics have led to the emergence of drug resistance in humans, animals, and agriculture, contributing to the global spread of this problem. Drug resistance can be either innate or acquired, with acquired resistance involving changes in the bacterial chromosomes or transferable elements. Bacterial species employ various mechanisms of drug resistance, including modifying the antibiotic targets, inactivating the drug, reducing uptake or increasing efflux, overexpressing the target, utilizing alternative pathways, and forming biofilms. One significant concern in the realm of drug resistance revolves around the emergence and proliferation of extended-spectrum beta-lactamases (ESBLs), a gene that is found in most gram-negative bacteria, primarily carried by Escherichia coli and Klebsiella pneumoniae in healthcare settings. ESBL-mediated resistance poses challenges for diagnosis, treatment, infection control, and antibiotic stewardship. Accurate detection of ESBL genes is crucial, and phenotypic methods are commonly used for initial screening. However, these methods have limitations, and confirmatory molecular techniques such as PCR and DNA sequencing are employed to accurately identify ESBL genes. Despite the significant global concerns surrounding ESBLs, they have spread worldwide, mainly facilitated by healthcare settings, inappropriate antimicrobial use, and host susceptibility. Addressing this issue requires implementing comprehensive measures, including enhanced surveillance, strict infection control practices, antibiotic stewardship programs, rapid diagnostic methods, alternative therapies, public education initiatives, and research focused on developing new drugs. Furthermore, collaboration among the healthcare, public health, and research sectors is pivotal in effectively combating the escalating threat posed by ESBL-mediated resistance. Antibiotics have revolutionized medical care by effectively treating bacterial infections. However, the emergence of ESBL gene resistance poses a global challenge that requires an integrated approach to prevent a threatening future.


Assuntos
Antibacterianos , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Humanos , Animais , Farmacorresistência Bacteriana/genética , Fenótipo , Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
BMC Infect Dis ; 24(1): 459, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689210

RESUMO

BACKGROUND: Acinetobacter baumannii is an opportunistic pathogen that can cause a variety of nosocomial infections in humans. This study aimed to molecularly characterize extended-spectrum beta-lactamase (ESBL) producing and carbapenem-resistant Acinetobacter species isolated from surgical site infections (SSI). METHODS: A multicentre cross-sectional study was performed among SSI patients at four hospitals located in Northern, Southern, Southwest, and Central parts of Ethiopia. The isolates were identified by microbiological methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibility was determined using disk diffusion. The presence of phenotypic ESBL and carbapenemase production was detected by employing standard microbiological tests, including combined disk diffusion (CDT). ESBL and carbapenem resistance determinants genes were studied by polymerase chain reaction (PCR) and sequencing. RESULTS: A total of 8.7% Acinetobacter species were identified from 493 culture-positive isolates out of 752 SSI wounds. The species identified by MALDI-TOF MS were 88.4% A. baumannii, 4.7% Acinetobacter pittii, 4.7% Acinetobacter soli, and 2.3% Acinetobacter lactucae. Of all isolates 93% were positive for ESBL enzymes according to the CDT. Using whole genome sequencing 62.8% of the A. baumannii harbored one or more beta-lactamase genes, and 46.5% harbored one or more carbapenemase producing genes. The distribution of beta-lactamases among Acinetobacter species by hospitals was 53.8%, 64.3%, 75%, and 75% at JUSH, TASH, DTCSH, and HUCSH respectively. Among ESBL genes, blaCTX-M alleles were detected in 21.4% of isolates; of these 83.3% were blaCTX-M-15. The predominant carbapenemase gene of blaOXA type was detected in 24 carbapenem-resistant A. baumannii followed by blaNDM alleles carried in 12 A. baumannii with blaNDM-1 as the most common. CONCLUSIONS: The frequency of Acinetobacter species that produce metallobetalactamases (MBLs) and ESBLs that were found in this study is extremely scary and calls for strict infection prevention and control procedures in health facilities helps to set effective antibiotics stewardship.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Testes de Sensibilidade Microbiana , Infecção da Ferida Cirúrgica , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Etiópia/epidemiologia , Estudos Transversais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/epidemiologia , Adulto , Masculino , Pessoa de Meia-Idade , Feminino , Antibacterianos/farmacologia , Adulto Jovem , Adolescente , Idoso , Criança , Pré-Escolar , Carbapenêmicos/farmacologia , Idoso de 80 Anos ou mais , Lactente
3.
Front Microbiol ; 15: 1336387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328425

RESUMO

Background: In resource-constrained settings, limited antibiotic options make treating carbapenem-resistant bacterial infections difficult for healthcare providers. This study aimed to assess carbapenemase expression in Gram-negative bacteria isolated from clinical samples in Jimma, Ethiopia. Methods: A cross-sectional study was conducted to assess carbapenemase expression in Gram-negative bacteria isolated from patients attending Jimma Medical Center. Totally, 846 Gram-negative bacteria were isolated and identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Phenotypic antibiotic resistance patterns were determined using the Kirby-Bauer disk diffusion method and Etest strips. Extended-spectrum ß-lactamase phenotype was determined using MAST disks, and carbapenemases were characterized using multiplex polymerase chain reactions (PCR). Results: Among the isolates, 19% (157/846) showed phenotypic resistance to carbapenem antibiotics. PCR analysis revealed that at least one carbapenemase gene was detected in 69% (107/155) of these strains. The most frequently detected acquired genes were blaNDM in 35% (37/107), blaVIM in 24% (26/107), and blaKPC42 in 13% (14/107) of the isolates. Coexistence of two or more acquired genes was observed in 31% (33/107) of the isolates. The most common coexisting acquired genes were blaNDM + blaOXA-23, detected in 24% (8/33) of these isolates. No carbapenemase-encoding genes could be detected in 31% (48/155) of carbapenem-resistant isolates, with P. aeruginosa accounting for 85% (41/48) thereof. Conclusion: This study revealed high and incremental rates of carbapenem-resistant bacteria in clinical samples with various carbapenemase-encoding genes. This imposes a severe challenge to effective patient care in the context of already limited treatment options against Gram-negative bacterial infections in resource-constrained settings.

4.
Infect Drug Resist ; 17: 293-303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293311

RESUMO

Purpose: The use of lytic bacteriophages for the control or elimination of pathogenic multidrug-resistant (MDR) bacteria is the promising alternative. However, the emergence of resistant bacterial variants after phage application may challenge its therapeutic benefit. In this study, we aimed to isolate candidate phages from sewage samples against two MDR Escherichia coli as well as their phage-resistant variant. Methods: MDR E. coli isolates (n = 10) obtained from Jimma Medical Center that had been properly identified and stored were used to isolate bacteriophages. Two lytic coliphages were isolated from hospital sewage samples following standard protocols. Upon single phage infection, phage-resistant variant quickly evolved serving as a new host for the isolation of a third lytic phage. This virulent phage's lytic activity against both its host and the wild host was investigated. The host infectivity of the various cocktails was assessed, and each phage's biological properties were studied. Results: Out of the first round of phage isolation process, two lytic phages were identified as VBO-E. coli 4307 and VBW-E. coli 4194. When exposed to VBO-E. coli 4307, the wild-type E. coli 4307 developed resistant variants. A third phage (VBA-E. coli 4307R) was isolated specific to this resistant variant (E. coli 4307R) under optimum condition. For VBO-E. coli 4307, VBW-E. coli 4194, and VBA-E. coli 4307R, the plaque assays generated under comparable conditions were 2.13 × 1010 PFU mL-1, 9.17 × 1012 PFU mL-1, and 3.3 × 1010 PFU mL-1, respectively. These phages have nearly identical stability and lytic ability but differ greatly in their host ranges for VBA-E. coli 4307R. Conclusion: While the wild-type MDR pathogen could easily evolve resistance when exposed to a single phage infection by VBO-E. coli 4307, it is still possible to isolate a novel bacteriophage from environmental samples that is effective against the phage-resistant variants. This indicates that it is possible to manage the effects of phage resistance pathogens even if they are MDR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...