Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 394(5): 885-902, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33205250

RESUMO

In the field of experimental pharmacology, researchers continuously investigate new relaxant agents of the airway smooth muscle cells (ASMCs), since the pathophysiology of respiratory illnesses, such as asthma, involves hyperresponsiveness and changes in ASMC homeostasis. In this scenario, labdane-type diterpenes, like forskolin (FSK), are a class of compounds known for their relaxing action on smooth muscle cells (SMCs), being this phenomenon related to the direct activation of AC-cAMP-PKA pathway. Considering the continuous effort of our group to study the mechanism of action and prospecting for compounds isolated from natural sources, in this paper, we presented how the diterpene 8(17),12E,14-labdatrien-18-oic acid (LBD) promotes relaxant effect on ASMC, performing in vitro experiments using isolated guinea pig trachea and in silico molecular docking/dynamics simulations. In vitro experiments showed that in the presence of aminophylline, FSK and LBD had their relaxant effect potentiated (EC50 from 1.4 ± 0.2 × 10-5 M to 1.5 ± 0.3 × 10-6 M for LBD and from 2.0 ± 0.2 × 10-7 M to 6.4 ± 0.4 × 10-8 M for FSK) while in the presence of Rp-cAMPS this effect was attenuated (EC50 from 1.4 ± 0.2 × 10-5 M to 3 × 10-4 M for LBD and from 2.0 ± 0.2 × 10-7 to 3.1 ± 1.0 × 10-6 M for FSK). Additionally, in silico simulations evidenced that the lipophilic character of LBD is probably responsible for its stability on AC binding site. LBD presented two preferential orientations, where the double bonds of the isoprene moiety as well as the unique polar group (carboxylic acid) in this compound form important anchoring points. In this sense, we consider that the LBD can interact stabilizing the catalytic dimmer of AC as the FSK, although less efficiently.


Assuntos
Diterpenos/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Traqueia/efeitos dos fármacos , Aminofilina/farmacologia , Animais , Sítios de Ligação , Colforsina/farmacologia , Simulação por Computador , Diterpenos/administração & dosagem , Diterpenos/química , Feminino , Cobaias , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Miócitos de Músculo Liso/metabolismo , Traqueia/citologia
2.
Mol Divers ; 24(1): 265-281, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30955150

RESUMO

Quaternary or spirocyclic 3-substituted-3-hydroxy-2-oxindole is considered a privileged scaffold. In other words, it is a molecular core present on several compounds with a wide spectrum of biological activities. Among its precursors, activated ketones (isatin nucleus) can be used as interesting starting points to Morita-Baylis-Hillman adducts derivatives, a class of compounds with good cytotoxic potential. In this paper, we present the synthesis, anti-proliferative activity against lung cancer cell line and a theoretical conformational study of 21 of Morita-Baylis-Hillman adducts from isatin derivatives, by DFT quantum chemical calculations, followed by a SAR and QSAR analysis. Besides, an efficient synthetic protocol and good biological activity profile were highlighted interesting observations about 1H NMR experimental spectra, molecular modeling results and crystallographic data available.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Técnicas de Química Sintética , Isatina/química , Isatina/farmacologia , Modelos Teóricos , Espectroscopia de Prótons por Ressonância Magnética , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Isatina/análogos & derivados , Isatina/síntese química , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
3.
Heliyon ; 5(10): e01692, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31720439

RESUMO

Cirsiliol is a flavone found in many Lamiaceae species with high cytotoxic activity against tumor cell lines. Although cirsiliol is being used in cancer therapy, its pharmacological potential is limited by its low solubility and bioavailability. In this paper, a cirsiliol-ß-cyclodextrin inclusion complex was developed in order to increase its solubility and bioavailability. The formation of inclusion complex was proved by scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) and solubility increment was verified through the ultraviolet-visible (UV-Vis) method. The cytotoxic effect against tumor cells (PC3, HCT-116 and HL-60 human cell lines, and S-180 murine cell line) and the antitumor activity in mice bearing sarcoma S-180 were also investigated. The inclusion complex was obtained with 71.45% of total recovery and solubility 2.1 times higher compared to the compound in its free form. This increment in solubility was responsible by a tumor growth inhibition potentiation (1.5 times greater compared to compound in its free form). In addition, this study showed that cirsiliol and its inclusion complex in ß-cyclodextrin have strong antitumor potential at low doses without promoting side effects commonly observed for conventional drugs as doxorubicin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA