Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yale J Biol Med ; 92(2): 241-250, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31249485

RESUMO

Circadian clocks drive biological rhythms in physiology and behavior, providing a selective advantage by enabling organisms to synchronize to the 24 h environmental day. This process depends on light-dark transitions as the main signal that shifts the phase of the clock. In mammals, the light input reaches the master circadian clock in the hypothalamic suprachiasmatic nucleus through glutamatergic afferents from the retina, resulting in phase-shifts of the overt rhythms which depend on the time of the day at which light is applied, leading to changes in the activity of circadian core clock genes (i.e., Per1). This circadian gating of the synchronizing effect of light is dependent on the specific activation of signal transduction pathways involving several kinases acting on protein effectors. Protein phosphorylation is also an important regulatory mechanism essential for the generation and maintenance of circadian rhythms and plays a crucial role in the degradation and the appropriate turnover of PER proteins. In this work, we review the role of the main kinases implicated in the function of the master clock, with emphasis in those involved in circadian photic entrainment.


Assuntos
Relógios Circadianos/fisiologia , Transdução de Sinal Luminoso/fisiologia , Mamíferos/fisiologia , Proteínas Quinases/metabolismo , Animais , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Luz , Mamíferos/genética , Mamíferos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fosforilação/efeitos da radiação
2.
Theor Appl Genet ; 126(2): 415-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23015218

RESUMO

Carrot (Daucus carota L.) is a cool-season vegetable normally classified as a biennial species, requiring vernalization to induce flowering. Nevertheless, some cultivars adapted to warmer climates require less vernalization and can be classified as annual. Most modern carrot cultivars are hybrids which rely upon cytoplasmic male-sterility for commercial production. One major gene controlling floral initiation and several genes restoring male fertility have been reported but none have been mapped. The objective of the present work was to develop the first linkage map of carrot locating the genomic regions that control vernalization response and fertility restoration. Using an F(2) progeny, derived from the intercross between the annual cultivar 'Criolla INTA' and a petaloid male sterile biennial carrot evaluated over 2 years, both early flowering habit, which we name Vrn1, and restoration of petaloid cytoplasmic male sterility, which we name Rf1, were found to be dominant traits conditioned by single genes. On a map of 355 markers covering all 9 chromosomes with a total map length of 669 cM and an average marker-to-marker distance of 1.88 cM, Vrn1 mapped to chromosome 2 with flanking markers at 0.70 and 0.46 cM, and Rf1 mapped to chromosome 9 with flanking markers at 4.38 and 1.12 cM. These are the first two reproductive traits mapped in the carrot genome, and their map location and flanking markers provide valuable tools for studying traits important for carrot domestication and reproductive biology, as well as facilitating carrot breeding.


Assuntos
Daucus carota/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Genes de Plantas , Infertilidade/genética , Infertilidade/prevenção & controle , Mapeamento Cromossômico , Cromossomos de Plantas , Daucus carota/genética , Flores/genética , Ligação Genética , Pólen/fisiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico
3.
BMC Genomics ; 12: 386, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21806822

RESUMO

BACKGROUND: The Apiaceae family includes several vegetable and spice crop species among which carrot is the most economically important member, with ~21 million tons produced yearly worldwide. Despite its importance, molecular resources in this species are relatively underdeveloped. The availability of informative, polymorphic, and robust PCR-based markers, such as microsatellites (or SSRs), will facilitate genetics and breeding of carrot and other Apiaceae, including integration of linkage maps, tagging of phenotypic traits and assisting positional gene cloning. Thus, with the purpose of isolating carrot microsatellites, two different strategies were used; a hybridization-based library enrichment for SSRs, and bioinformatic mining of SSRs in BAC-end sequence and EST sequence databases. This work reports on the development of 300 carrot SSR markers and their characterization at various levels. RESULTS: Evaluation of microsatellites isolated from both DNA sources in subsets of 7 carrot F2 mapping populations revealed that SSRs from the hybridization-based method were longer, had more repeat units and were more polymorphic than SSRs isolated by sequence search. Overall, 196 SSRs (65.1%) were polymorphic in at least one mapping population, and the percentage of polymophic SSRs across F2 populations ranged from 17.8 to 24.7. Polymorphic markers in one family were evaluated in the entire F2, allowing the genetic mapping of 55 SSRs (38 codominant) onto the carrot reference map. The SSR loci were distributed throughout all 9 carrot linkage groups (LGs), with 2 to 9 SSRs/LG. In addition, SSR evaluations in carrot-related taxa indicated that a significant fraction of the carrot SSRs transfer successfully across Apiaceae, with heterologous amplification success rate decreasing with the target-species evolutionary distance from carrot. SSR diversity evaluated in a collection of 65 D. carota accessions revealed a high level of polymorphism for these selected loci, with an average of 19 alleles/locus and 0.84 expected heterozygosity. CONCLUSIONS: The addition of 55 SSRs to the carrot map, together with marker characterizations in six other mapping populations, will facilitate future comparative mapping studies and integration of carrot maps. The markers developed herein will be a valuable resource for assisting breeding, genetic, diversity, and genomic studies of carrot and other Apiaceae.


Assuntos
Mapeamento Cromossômico , Daucus carota/genética , Genômica , Repetições de Microssatélites/genética , Polimorfismo Genético/genética , Etiquetas de Sequências Expressas/metabolismo , Marcadores Genéticos/genética , Genoma de Planta/genética , Hibridização Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...