Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826168

RESUMO

The anther-smut host-pathogen system has provided extensive insights into the evolutionary ecology of disease resistance, transmission modes, host shifts, pathogen specialization, and disease evolution in metapopulations. It also has led to unexpected insights into sex ratio distorters, sex chromosome evolution, and transposable elements in fungi. In addition, anther-smut disease played a major role in Linnaeus' germ theory and the correspondence on parasitic castration between Darwin and Becker, one of the first female botanists. Here, we explicitly highlight some of the realities in the process of science, using an unusual autobiographical approach to describe how we came to collaborate on this system in the 1980s. Using perspectives from our different career stages, we present a surprising narrative that could not be deduced from merely reading the published papers. While our work was grounded in previous ecological and evolutionary theory, it was the product as much of empirical failures and intellectual roadblocks, as the result of a progressive scientific method. Our experiences illustrate not only the "human dimension of science" but more importantly show that linear sequences of hypothesis testing do not necessarily lead to new study systems and new ideas. We suggest there is a need to re-evaluate the scientific method in ecology and evolution, especially where the challenge is to engage in a productive dialog between natural history and theory.

2.
Ecol Evol ; 10(13): 6208-6222, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724508

RESUMO

Both mutualistic and pathogenic soil microbes are known to play important roles in shaping the fitness of plants, likely affecting plants at different life cycle stages.In order to investigate the differential effects of native soil mutualists and pathogens on plant fitness, we compared survival and reproduction of two annual tallgrass prairie plant species (Chamaecrista fasciculata and Coreopsis tinctoria) in a field study using 3 soil inocula treatments containing different compositions of microbes. The soil inocula types included fresh native whole soil taken from a remnant prairie containing both native mutualists and pathogens, soil enhanced with arbuscular mycorrhizal (AM) fungi derived from remnant prairies, and uninoculated controls.For both species, plants inoculated with native prairie AM fungi performed much better than those in uninoculated soil for all parts of the life cycle. Plants in the native whole prairie soil were either generally similar to plants in the uninoculated soil or had slightly higher survival or reproduction.Overall, these results suggest that native prairie AM fungi can have important positive effects on the fitness of early successional plants. As inclusion of prairie AM fungi and pathogens decreased plant fitness relative to prairie AM fungi alone, we expect that native pathogens also can have large effects on fitness of these annuals. Our findings support the use of AM fungi to enhance plant establishment in prairie restorations.

3.
Ecol Lett ; 21(5): 724-733, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29575384

RESUMO

Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life-history costs of sprouting, and of dormancy. Short-lived and mycoheterotrophic species have higher proportions of dormant plants than long-lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.


Assuntos
Evolução Biológica , Herbivoria , Demografia , Flores
4.
Ecol Evol ; 8(23): 11975-11986, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598792

RESUMO

Worldwide, grasslands are becoming shrublands/forests. In North America, eastern red cedar (Juniperus virginiana) often colonizes prairies. Habitat management can focus on woody removal, but we often lack long-term data on whether removal leads to population recovery of herbaceous plants without seeding. We undertook a long-term study (17 years) of numbers of the rare annual plant Agalinis auriculata in a gridwork of 100 m2 plots in adjacent prairie and oldfield sites in Kansas, USA. We collected data before and after removal of Juniperus virginiana at the prairie. Plant population sizes were highly variable at both sites and over time. High numbers of plants in a plot 1 year were often followed by low numbers the following year, suggesting negative density-dependence. Plant numbers were lowest with extensive woody cover and with low precipitation. After woody plant removal, A. auriculata increased dramatically in abundance and occupancy in most years; increases were also seen at the oldfield, suggesting later survey years were overall more favorable. Synthesis and applications: Removal of woody plants led to increased numbers of a rare annual prairie plant, without seeding. Multiple years of data were essential for interpretation given extreme temporal variability in numbers. The largest prairie population was 7 years following tree removal, showing that positive effects of management can last this long. This species also fared well in oldfield habitat, suggesting restoration opportunities. Given that land managers are busy, time-efficient field methods and data analysis approaches such as ours offer advantages. In addition to general linear models, we suggest Rank Occupancy-Abundance Profiles (ROAPs), a simple-to-use data visualization and analysis method. Creation of ROAPs for sites before and after habitat management helps reveal the degree to which plant populations are responding to management with changes in local density, changes in occupancy, or both.

5.
Am Nat ; 190(4): 570-583, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28937813

RESUMO

Biological populations are strongly influenced by random variations in their environment, which are often autocorrelated in time. For disturbance specialist plant populations, the frequency and intensity of environmental stochasticity (via disturbances) can drive the qualitative nature of their population dynamics. In this article, we extended our earlier model to explore the effect of temporally autocorrelated disturbances on population persistence. In our earlier work, we only assumed disturbances were independent and identically distributed in time. We proved that the plant seed bank population converges in distribution, and we showed that the mean and variance in seed bank population size were both increasing functions of the autocorrelation coefficient for all parameter values considered, but the interplay between increasing population size and increasing variability caused interesting relationships between quasi-extinction probability and autocorrelation. For example, for populations with low seed survival, fecundity, and disturbance frequency, increasingly positive autocorrelated disturbances decreased quasi-extinction probability. Higher disturbance frequency coupled with low seed survival and fecundity caused a nonmontone relationship between autocorrelation and quasi-extinction, where increasingly positive autocorrelations eventually caused an increase in quasi-extinction probability. For higher seed survival, fecundity, and/or disturbance frequency, quasi-extinction probability was generally a monotonically increasing function of the autocorrelation coefficient.


Assuntos
Meio Ambiente , Plantas , Banco de Sementes , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional
6.
Virus Res ; 241: 172-184, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28688850

RESUMO

As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most stunted annual Avena sativa L. (oats). These findings suggest that some of the diversity in grass-infecting Luteoviridae reflects viral capacity to modulate defenses in different host types. Intriguingly, while all virus treatments also reduced root production in both host species, only crop-associated BYDV-PAV (or co-infection) reduced rooting depths. Such root effects may increase host susceptibility to drought, and indicate that BYDV-PAV pathogenicity is determined by something other than a P0 VSR. These findings contribute to growing evidence that pathogenic crop-associated viruses may harm native species as well as crops. Critical next questions include the extent to which crop-associated selection pressures drive viral pathogenesis.


Assuntos
Avena/virologia , Grão Comestível/crescimento & desenvolvimento , Luteoviridae/crescimento & desenvolvimento , Panicum/virologia , Raízes de Plantas/crescimento & desenvolvimento , Interferência de RNA , Triticum/virologia , Sequência de Aminoácidos , Animais , Afídeos/virologia , Avena/crescimento & desenvolvimento , Sequência de Bases , Grão Comestível/virologia , Luteoviridae/genética , Panicum/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/virologia , Análise de Sequência de RNA , Triticum/crescimento & desenvolvimento
7.
J Vis Exp ; (117)2016 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-27842344

RESUMO

We describe techniques for approximating seed bank dynamics over time using Helianthus annuus as an example study species. Strips of permeable polyester fabric and glue can be folded and glued to construct a strip of compartments that house seeds and identifying information, while allowing contact with soil leachate, water, microorganisms, and ambient temperature. Strips may be constructed with a wide range of compartment numbers and sizes and allow the researcher to house a variety of genotypes within a single species, different species, or seeds that have experienced different treatments. As opposed to individual seed packets, strips are more easily retrieved as a unit. While replicate packets can be included within a strip, different strips can act as blocks or can be retrieved at different times for observation of seed behavior over time. We used a high temperature glue gun to delineate compartments and sealed the strips once the seed and tags identifying block and removal times were inserted. The seed strips were then buried in the field at the desired depth, with the location marked for later removal. Burrowing animal predators were effectively excluded by use of a covering of metal mesh hardware cloth on the soil surface. After the selected time interval for burial, strips were dug up and seeds were assessed for germination, dormancy and mortality. While clearly dead seeds can often be distinguished from ungerminated living ones by eye, dormant seeds were conclusively identified using a standard Tetrazolium chloride colorimetric test for seed viability.


Assuntos
Germinação , Sementes , Helianthus , Temperatura Alta , Estações do Ano , Solo , Água
8.
Curr Opin Virol ; 19: 30-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27394001

RESUMO

Global land conversion and intensification of agriculture mean that remnant native plant populations are increasingly exposed to crop viruses. What are the consequences for wild plants? In natural unmanaged systems, the key consideration is how crop virus infection influences plant fitness. Field studies of virus effects on wild plant fitness are scant. Approaches include (i) observational studies, (ii) studies of experimental plants with natural infection, and (iii) studies of experimental plants with experimental infection, with most studies focused on viruses in the Luteoviridae and Potyviridae families. Fitness effects documented are largely neutral to negative. Crop virus influence on wild plants merits attention in ecological conservation and restoration.


Assuntos
Produtos Agrícolas/virologia , Doenças das Plantas/virologia , Plantas/virologia , Agricultura , Luteoviridae/patogenicidade , Potyviridae/patogenicidade
9.
Evol Appl ; 8(5): 510-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26029263

RESUMO

Hybridization produces strong evolutionary forces. In hybrid zones, selection can differentially occur on traits and selection intensities may differ among hybrid generations. Understanding these dynamics in crop-wild hybrid zones can clarify crop-like traits likely to introgress into wild populations and the particular hybrid generations through which introgression proceeds. In a field experiment with four crop-wild hybrid Helianthus annuus (sunflower) cross types, we measured growth and life history traits and performed phenotypic selection analysis on early season traits to ascertain the likelihood, and routes, of crop allele introgression into wild sunflower populations. All cross types overwintered, emerged in the spring, and survived until flowering, indicating no early life history barriers to crop allele introgression. While selection indirectly favored earlier seedling emergence and taller early season seedlings, direct selection only favored greater early season leaf length. Further, there was cross type variation in the intensity of selection operating on leaf length. Thus, introgression of multiple early season crop-like traits, due to direct selection for greater early season leaf length, should not be impeded by any cross type and may proceed at different rates among generations. In sum, alleles underlying early season sunflower crop-like traits are likely to introgress into wild sunflower populations.

11.
Evol Appl ; 8(2): 121-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25685189

RESUMO

Domestication has resulted in selection upon seed traits found in wild populations, yet crop-wild hybrids retain some aspects of both parental phenotypes. Seed fates of germination, dormancy, and mortality can influence the success of crop allele introgression in crop-wild hybrid zones, especially if crop alleles or crop-imparted seed coverings result in out-of-season germination. We performed a seed burial experiment using crop, wild, and diverse hybrid sunflower (Helianthus annuus) cross types to test how a cross type's maternal parent and nuclear genetic composition might affect its fate under field conditions. We observed higher maladaptive fall germination in the crop- and F1- produced seeds than wild-produced seeds and, due to an interaction with percent crop alleles, fall germination was higher for cross types with more crop-like nuclear genetics. By spring, crop-produced cross types had the highest overwintering mortality, primarily due to higher fall germination. Early spring germination was identical across maternal types, but germination continued for F1-produced seeds. In conclusion, the more wild-like the maternal parent or the less proportion of the cross type's genome contributed by the crop, the greater likelihood a seed will remain ungerminated than die. Wild-like dormancy may facilitate introgression through future recruitment from the soil seed bank.

12.
PLoS One ; 9(10): e109001, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295859

RESUMO

Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary depending on biotic conditions, thereby influencing introgression patterns. Based on past work, we predicted that increased competition would enhance introgression between cultivated and wild sunflower (Helianthus annuus) by reducing fitness advantages of wild plants. To test this prediction, we established a factorial field experiment in Kansas, USA where we monitored the fitness of four cross types (Wild, F1, F2, and BCw hybrids) under different levels of interspecific and intraspecific competition. Intraspecific manipulations consisted both of density of competitors and of frequency of crop-wild hybrids. We recorded emergence of overwintered seeds, survival to reproduction, and numbers of seeds produced per reproductive plant. We also calculated two compound fitness measures: seeds produced per emerged seedling and seeds produced per planted seed. Cross type and intraspecific competition affected emergence and survival to reproduction, respectively. Further, cross type interacted with competitive treatments to influence all other fitness traits. More intense competition treatments, especially related to density of intraspecific competitors, repeatedly reduced the fitness advantage of wild plants when considering seeds produced per reproductive plant and per emerged seedling, and F2 plants often became indistinguishable from the wilds. Wild fitness remained superior when seedling emergence was also considered as part of fitness, but the fitness of F2 hybrids relative to wild plants more than quadrupled with the addition of interspecific competitors and high densities of intraspecific competitors. Meanwhile, contrary to prediction, lower hybrid frequency reduced wild fitness advantage. These results emphasize the importance of taking a full life cycle perspective. Additionally, due to effects of exogenous selection, a given hybrid generation may be especially well-suited to hastening introgression under particular environmental conditions.


Assuntos
Helianthus/fisiologia , Hibridização Genética , Produtos Agrícolas , Fertilidade/fisiologia , Reprodução/fisiologia , Plântula/fisiologia , Sementes/fisiologia
13.
Am J Bot ; 101(7): 1176-1188, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25016007

RESUMO

• Premise of the study: The fitness of an offspring may depend on its nuclear genetic composition (via both parental genotypes) as well as on genetic maternal effects (via only the maternal parent). Understanding the relative importance of these two genetic factors is particularly important for research on crop-wild hybridization, since traits with important genetic maternal effects (e.g., seed size) often differ among crops and their relatives. We hypothesized that the effects of these genetic factors on fitness components would change across the life cycle of hybrids.• Methods: We followed seed, plant size, and reproductive traits in field experiments with wild and four crop-wild hybrids of sunflower (Helianthus annuus), which differed in nuclear genetic composition and maternal parent (wild or F1 hybrid).• Key results: We identified strong genetic maternal effects for early life cycle characteristics, with seeds produced on an F1 mother having premature germination, negligible seed dormancy, and greater seedling size. Increased percentages of crop alleles also increased premature germination and reduced dormancy in seeds produced on a wild mother. For mature plants, nuclear genetic composition dominated: greater percentages of crop alleles reduced height, branching, and fecundity.• Conclusions: Particular backcrosses between hybrids and wilds may differentially facilitate movement of crop alleles into wild populations due to their specific features. For example, backcross seeds produced on wild mothers can persist in the seed bank, illustrating the importance of genetic maternal effects, whereas backcross individuals with either wild or F1 mothers have high fecundity, resulting from their wild-like nuclear genetic composition.

14.
PLoS One ; 7(12): e52762, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285179

RESUMO

Monitoring programs, where numbers of individuals are followed through time, are central to conservation. Although incomplete detection is expected with wildlife surveys, this topic is rarely considered with plants. However, if plants are missed in surveys, raw count data can lead to biased estimates of population abundance and vital rates. To illustrate, we had five independent observers survey patches of the rare plant Asclepias meadii at two prairie sites. We analyzed data with two mark-recapture approaches. Using the program CAPTURE, the estimated number of patches equaled the detected number for a burned site, but exceeded detected numbers by 28% for an unburned site. Analyses of detected patches using Huggins models revealed important effects of observer, patch state (flowering/nonflowering), and patch size (number of stems) on probabilities of detection. Although some results were expected (i.e. greater detection of flowering than nonflowering patches), the importance of our approach is the ability to quantify the magnitude of detection problems. We also evaluated the degree to which increased observer numbers improved detection: smaller groups (3-4 observers) generally found 90 - 99% of the patches found by all five people, but pairs of observers or single observers had high error and detection depended on which individuals were involved. We conclude that an intensive study at the start of a long-term monitoring study provides essential information about probabilities of detection and what factors cause plants to be missed. This information can guide development of monitoring programs.


Assuntos
Asclepias , Conservação dos Recursos Naturais , Humanos , Kansas , Densidade Demográfica
15.
Am J Bot ; 98(6): 975-85, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21653510

RESUMO

PREMISE: Variation in seedling emergence timing is considered adaptive over the long term in wild populations, but early emergence can result in a fitness advantage. To explore the adaptive significance of seedling emergence timing, it should be studied under realistic conditions and in the context of other traits that influence fitness. METHODS: In a common garden, we monitored maternal families from seed to flowering (including over winter) with intra- and interspecific competition. We assessed the effects of emergence timing and plant size on survival to anthesis in different genetic backgrounds and under varying competition. KEY RESULTS: We found genetic variation for emergence (probability and timing), size, and survival to anthesis. We also found negative selection, both phenotypic and genetic, on emergence time, such that early emergers (day 8) had almost twice as great a predicted probability of surviving as later emergers (day 28). Size had strong positive effects on survival and, furthermore, the beneficial effects of early emergence may be mediated through size. Maternal family and competitive environment can also affect selection on emergence timing. CONCLUSIONS: Our results indicate that early emergence is related to greater survival in wild sunflower, although there may be little direct selection on this trait; rather, its importance may be mediated by its effects on highly adaptive traits associated with size. Also, the effects of early emergence may vary across genetic backgrounds and competitive conditions, facilitating the maintenance of variation for this trait across a diverse landscape.


Assuntos
Helianthus/crescimento & desenvolvimento , Helianthus/genética , Plântula/anatomia & histologia , Plântula/crescimento & desenvolvimento , Seleção Genética , Tamanho Corporal , Flores/fisiologia , Helianthus/anatomia & histologia , Análise dos Mínimos Quadrados , Fenótipo , Característica Quantitativa Herdável , Estações do Ano , Plântula/genética , Fatores de Tempo
17.
BMC Res Notes ; 2: 197, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19785756

RESUMO

BACKGROUND: Plant resistance (R) gene products recognize pathogen effector molecules. Many R genes code for proteins containing nucleotide binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. NBS-LRR proteins can be divided into two groups, TIR-NBS-LRR and non-TIR-NBS-LRR, based on the structure of the N-terminal domain. Although both classes are clearly present in gymnosperms and eudicots, only non-TIR sequences have been found consistently in monocots. Since most studies in monocots have been limited to agriculturally important grasses, it is difficult to draw conclusions. The purpose of our study was to look for evidence of these sequences in additional monocot orders. FINDINGS: Using degenerate PCR, we amplified NBS sequences from four monocot species (C. blanda, D. marginata, S. trifasciata, and Spathiphyllum sp.), a gymnosperm (C. revoluta) and a eudicot (C. canephora). We successfully amplified TIR-NBS-LRR sequences from dicot and gymnosperm DNA, but not from monocot DNA. Using databases, we obtained NBS sequences from additional monocots, magnoliids and basal angiosperms. TIR-type sequences were not present in monocot or magnoliid sequences, but were present in the basal angiosperms. Phylogenetic analysis supported a single TIR clade and multiple non-TIR clades. CONCLUSION: We were unable to find monocot TIR-NBS-LRR sequences by PCR amplification or database searches. In contrast to previous studies, our results represent five monocot orders (Poales, Zingiberales, Arecales, Asparagales, and Alismatales). Our results establish the presence of TIR-NBS-LRR sequences in basal angiosperms and suggest that although these sequences were present in early land plants, they have been reduced significantly in monocots and magnoliids.

18.
Oecologia ; 130(2): 274-280, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28547151

RESUMO

Assessing the effects of seed density on the population dynamics of wild plant species with crop relatives will be vital in determining the potential effects of introducing traits into wild populations as a result of crop-to-wild gene flow. We examined experimental sunflower (Helianthus annuus) patches in eastern Kansas to determine the effects of seed density and predation on seedling recruitment and seed production in the next generation. High seed density treatment plots had significantly more seedlings and adult plants than did low seed density treatment plots. Overwinter vertebrate seed predator exclusion treatments resulted in increases in plant density compared to plots in which vertebrates were not excluded. Control patches (no seeds added) contained virtually no plants. Head production and estimated total seed production for a patch were not statistically different among treatments (excluding control plots). Although initial seed density and vertebrate post-dispersal seed predation do appear to have effects on seedling recruitment, neither appear to be limiting seed production of competing adult plants. Therefore, variation in seed densities (over the range examined) may have limited effects on local population dynamics. It is important to note that the choice of seed densities may affect the results obtained: the seed densities used in this study may, in retrospect, be higher than in the small roadside populations typical in eastern Kansas, yet other natural sites have much larger densities. Further, the effects of increased seed density at a local site may have other important effects such as altering metapopulation dynamics through increased long-distance dispersal or increased local seed bank size.

19.
Oecologia ; 121(3): 330-338, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28308321

RESUMO

The fitness of crop-wild hybrids can influence gene flow between crop and wild populations. Seed predation levels in crop-wild hybrid plants can be an important factor in determining plant fitness, especially in large-seeded crops such as sunflower. To determine patterns of pre-dispersal seed predation, seeds were collected from wild sunflowers (Helianthus annuus L.) and wild×crop F1 hybrids at three experimental field sites in eastern Kansas. Seed heads were dissected and each seed was counted and scored for categories of seed damage by lepidopteran and coleopteran larvae. Hybrid seed heads showed significantly higher levels of insect-damaged seeds. The average hybrid plant had 36.5% of its seeds (or 45.1 seeds per plant) eaten by insect larvae while the average wild plant lost only 1.8% (or 95 seeds) to seed predators. Hybrid populations had higher levels of total insect damage even when date of flowering, flower head diameter, and the number of open heads within the study site were accounted for. These results suggest that the reduced fecundity of F1 crop-wild sunflower hybrids demonstrated in other studies may be augmented by the increased seed predation in hybrid flower heads. Fecundity estimates of crop-wild hybrid and wild plants that disregard differential seed predation levels may not accurately reflect the actual relative contributions of hybrid and wild plants to future generations.

20.
Oecologia ; 105(2): 205-213, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28307084

RESUMO

The spatial scale of genetic diversity among patches of a host plant could affect the likelihood of pathogen adaptation to the host. If host patches are genetically distinct, pathogen adaptation to local host genotypes may occur. To study this issue, we focused on the ecological and genetic interactions between two rust fungi, Puccinia seymouriana and P. sparganioides, and the clonal prairie grass, Spartina pectinata. In a field transplant experiment, disease levels differed among plants from different patches, suggesting variation in resistance. Over a 4.5-km scale, disease levels were not higher on plants transplanted back into their source patch as opposed to other locations, providing no evidence for local adaptation in the pathogen. However, on the spatial scales examined (ranging from 0.2 km to 120 km), there was no relationship between the physical distance separating host patches and their similarity in isozyme banding patterns, implying that plants from more distant patches are not necessarily more genetically distinct than plants from nearby patches. Plants derived from the most distant location had, on average, the lowest mean number of pustules at the end of the summer, suggesting the need for reciprocal transplant studies to be performed on a larger spatial scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...