Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Arch Bone Jt Surg ; 12(2): 102-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420518

RESUMO

Objectives: Synovial fluid or tissue culture is the current gold standard for diagnosis of infection, but Cutibacterium acnes (C. acnes) is a frequent cause of shoulder PJI and is a notoriously fastidious organism. The purpose of this study was to compare quantitative real-time polymerase chain reaction (qRT-PCR) to standard culture as a more rapid, sensitive means of identifying C. acnes from the glenohumeral joint. We hypothesized that qRT-PCR would be more effective than standard culture at identifying C. acnes and would have greater sensitivity and specificity for detecting infection. Methods: This was a prospective observational study with 100 consecutive patients undergoing arthroscopic or open shoulder surgery with known positive and negative controls. Intraoperatively, synovial fluid and tissue was obtained for C. acnes qRT-PCR and results were blinded to the gold standard microbiology cultures. Results: Clinical review demonstrated 3 patients (3%) with positive cultures, none of which were positive for C. acnes. Of the samples tested by the C. acnes qRT-PCR standard curve, 12.2% of tissue samples and 4.5% of fluid samples were positive. Culture sensitivity was 60.0%, specificity was 100.0%, PPV was 100.0%, and NPV was 97.9%. C. acnes qRT-PCR standard curve sensitivity, specificity, PPV, and NPV was 60.0%, 90.3%, 25.0%, and 97.7% respectively for tissue specimens and 0%, 95.2%, 0%, and 95.2% respectively, for fluid specimens. For combination of culture and tissue qRT-PCR, the sensitivity, specificity, PPV and NPV was 100%, 90.3%, 35.7%, and 100%, respectively. Conclusion: We report that qRT-PCR for C. acnes identified the organism more frequently than conventional culture. While these findings demonstrate the potential utility of qRT-PCR, the likelihood of false positive results of qRT-PCR should be considered. Thus, qRT-PCR may be useful as an adjuvant to current gold standard workup of synovial fluid or tissue culture for the diagnosis of infection.

2.
J Exp Clin Cancer Res ; 43(1): 64, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424636

RESUMO

Colorectal cancer (CRC) is a heterogenous malignancy underpinned by dysregulation of cellular signaling pathways. Previous literature has implicated aberrant JAK/STAT3 signal transduction in the development and progression of solid tumors. In this study we investigate the effectiveness of inhibiting JAK/STAT3 in diverse CRC models, establish in which contexts high pathway expression is prognostic and perform in depth analysis underlying phenotypes. In this study we investigated the use of JAK inhibitors for anti-cancer activity in CRC cell lines, mouse model organoids and patient-derived organoids. Immunohistochemical staining of the TransSCOT clinical trial cohort, and 2 independent large retrospective CRC patient cohorts was performed to assess the prognostic value of JAK/STAT3 expression. We performed mutational profiling, bulk RNASeq and NanoString GeoMx® spatial transcriptomics to unravel the underlying biology of aberrant signaling. Inhibition of signal transduction with JAK1/2 but not JAK2/3 inhibitors reduced cell viability in CRC cell lines, mouse, and patient derived organoids (PDOs). In PDOs, reduced Ki67 expression was observed post-treatment. A highly significant association between high JAK/STAT3 expression within tumor cells and reduced cancer-specific survival in patients with high stromal invasion (TSPhigh) was identified across 3 independent CRC patient cohorts, including the TrasnSCOT clinical trial cohort. Patients with high phosphorylated STAT3 (pSTAT3) within the TSPhigh group had higher influx of CD66b + cells and higher tumoral expression of PDL1. Bulk RNAseq of full section tumors showed enrichment of NFκB signaling and hypoxia in these cases. Spatial deconvolution through GeoMx® demonstrated higher expression of checkpoint and hypoxia-associated genes in the tumor (pan-cytokeratin positive) regions, and reduced lymphocyte receptor signaling in the TME (pan-cytokeratin- and αSMA-) and αSMA (pan-cytokeratin- and αSMA +) areas. Non-classical fibroblast signatures were detected across αSMA + regions in cases with high pSTAT3. Therefore, in this study we have shown that inhibition of JAK/STAT3 represents a promising therapeutic strategy for patients with stromal-rich CRC tumors. High expression of JAK/STAT3 proteins within both tumor and stromal cells predicts poor outcomes in CRC, and aberrant signaling is associated with distinct spatially-dependant differential gene expression.


Assuntos
Neoplasias Colorretais , Humanos , Animais , Camundongos , Estudos Retrospectivos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transdução de Sinais , Hipóxia , Queratinas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral
3.
Eur Spine J ; 33(3): 892-899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37046075

RESUMO

PURPOSE: Lumbar spinal stenosis (LSS) is the most common reason for spinal surgery in patients over the age of 65, and there are few effective non-surgical treatments. Therefore, the development of novel treatment or preventative modalities to decrease overall cost and morbidity associated with LSS is an urgent matter. The cause of LSS is multifactorial; however, a significant contributor is ligamentum flavum hypertrophy (LFH) which causes mechanical compression of the cauda equina or nerve roots. We assessed the role of a novel target, microRNA-29a (miR-29a), in LFH and investigated the potential for using miR-29a as a therapeutic means to combat LSS. METHODS: Ligamentum flavum (LF) tissue was collected from patients undergoing decompressive surgery for LSS and assessed for levels of miR-29a and pro-fibrotic protein expression. LF cell cultures were then transfected with either miR-29a over-expressor (agonist) or inhibitor (antagonist). The effects of over-expression and under-expression of miR-29a on expression of pro-fibrotic proteins was assessed. RESULTS: We demonstrated that LF at stenotic levels had a loss of miR-29a expression. This was associated with greater LF tissue thickness and higher mRNA levels of collagen I and III. We also demonstrated that miR29-a plays a direct role in the regulation of collagen gene expression in ligamentum flavum. Specifically, agents that increase miR-29a may attenuate LFH, while those that decrease miR-29a promote fibrosis and LFH. CONCLUSION: This study demonstrates that miR-29a may potentially be used to treat LFH and provides groundwork to initiate the development of a therapeutic product for LSS.


Assuntos
Cauda Equina , MicroRNAs , Estenose Espinal , Humanos , Colágeno Tipo I , Hipertrofia , MicroRNAs/genética , Procedimentos Neurocirúrgicos , Estenose Espinal/terapia
4.
J Cancer ; 14(10): 1837-1847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476187

RESUMO

PURPOSE: Colorectal cancer (CRC) is the third most diagnosed cancer worldwide. Despite a well-established knowledge of tumour development, biomarkers to predict patient outcomes are still required. S100 calcium-binding protein A2 (S100A2) has been purposed as a potential marker in many types of cancer, however, the prognostic value of S100A2 in CRC is rarely reported. MATERIAL AND METHODS: In this study, immunohistochemistry (IHC) was performed to identify the prognostic role of S100A2 protein expression in the tumour core of the tissue microarrays (TMAs) in colorectal cancer patients (n=787). Bulk RNA transcriptomic data was used to identify significant genes compared between low and high cytoplasmic S100A2 groups. Multiplex immunofluorescence (mIF) was performed to further study and confirm the immune infiltration in tumours with low and high cytoplasmic S100A2. RESULTS: Low cytoplasmic protein expression of S100A2 in the tumour core was associated with poor survival (HR 0.539, 95%CI 0.394-0.737, P<0.001) and other adverse tumour phenotypes. RNA transcriptomic analysis showed a gene significantly associated with the low cytoplasmic S100A2 group (AKT3, TAGLN, MYLK, FGD6 and ETFDH), which correlated with tumour development and progression. GSEA analysis identifies the enriched anti-tumour and immune activity group of genes in high cytoplasmic S100A2. Additionally, mIF staining showed that high CD3+FOXP3+ and CD163+ inversely associated with low cytoplasmic S100A2 (P<0.001, P=0.009 respectively). CONCLUSION: Our finding demonstrates a prognostic value of S100A2 together with the correlation with immune infiltration in CRC.

5.
BMJ Open ; 13(5): e066524, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156585

RESUMO

OBJECTIVES: We aimed to design and produce a low-cost, ergonomic, hood-integrated powered air-purifying respirator (Bubble-PAPR) for pandemic healthcare use, offering optimal and equitable protection to all staff. We hypothesised that participants would rate Bubble-PAPR more highly than current filtering face piece (FFP3) face mask respiratory protective equipment (RPE) in the domains of comfort, perceived safety and communication. DESIGN: Rapid design and evaluation cycles occurred based on the identified user needs. We conducted diary card and focus group exercises to identify relevant tasks requiring RPE. Lab-based safety standards established against British Standard BS-EN-12941 and EU2016/425 covering materials; inward particulate leakage; breathing resistance; clean air filtration and supply; carbon dioxide elimination; exhalation means and electrical safety. Questionnaire-based usability data from participating front-line healthcare staff before (usual RPE) and after using Bubble-PAPR. SETTING: Overseen by a trial safety committee, evaluation progressed sequentially through laboratory, simulated, low-risk, then high-risk clinical environments of a single tertiary National Health Service hospital. PARTICIPANTS: 15 staff completed diary cards and focus groups. 91 staff from a range of clinical and non-clinical roles completed the study, wearing Bubble-PAPR for a median of 45 min (IQR 30-80 (15-120)). Participants self-reported a range of heights (mean 1.7 m (SD 0.1, range 1.5-2.0)), weights (72.4 kg (16.0, 47-127)) and body mass indices (25.3 (4.7, 16.7-42.9)). OUTCOME MEASURES: Preuse particulometer 'fit testing' and evaluation against standards by an independent biomedical engineer.Primary:Perceived comfort (Likert scale).Secondary: Perceived safety, communication. RESULTS: Mean fit factor 16 961 (10 participants). Bubble-PAPR mean comfort score 5.64 (SD 1.55) vs usual FFP3 2.96 (1.44) (mean difference 2.68 (95% CI 2.23 to 3.14, p<0.001). Secondary outcomes, Bubble-PAPR mean (SD) versus FFP3 mean (SD), (mean difference (95% CI)) were: how safe do you feel? 6.2 (0.9) vs 5.4 (1.0), (0.73 (0.45 to 0.99)); speaking to other staff 7.5 (2.4) vs 5.1 (2.4), (2.38 (1.66 to 3.11)); heard by other staff 7.1 (2.3) vs 4.9 (2.3), (2.16 (1.45 to 2.88)); speaking to patients 7.8 (2.1) vs 4.8 (2.4), (2.99 (2.36 to 3.62)); heard by patients 7.4 (2.4) vs 4.7 (2.5), (2.7 (1.97 to 3.43)); all p<0.01. CONCLUSIONS: Bubble-PAPR achieved its primary purpose of keeping staff safe from airborne particulate material while improving comfort and the user experience when compared with usual FFP3 masks. The design and development of Bubble-PAPR were conducted using a careful evaluation strategy addressing key regulatory and safety steps. TRIAL REGISTRATION NUMBER: NCT04681365.


Assuntos
Dispositivos de Proteção Respiratória , Medicina Estatal , Humanos , Pessoal de Saúde , Percepção , Hospitais
6.
J Orthop Surg (Hong Kong) ; 31(1): 10225536231163466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943428

RESUMO

BACKGROUND: Muscle injury and concomitant bone injury are important drivers to induce heterotopic ossification (HO). However, the related roles of muscle and concomitant bone injury in HO formation are still unclear. This study aims to develop a mouse model through the combination of hindlimb amputation (Am) and cardiotoxin (CTX) injection to investigate the mechanism of HO formation. METHOD: The mice were randomly divided into Am group (Am of right hindlimb, n = 12), CTX group (CTX injection in the calf muscle of left hindlimb, n = 12) and Am + CTX group (the combination of Am of right hindlimb and CTX injection of left hindlimb, n = 18). MicroCT was used to evaluate the incidence of HO. Histology was used to investigate the progression of HO. RESULTS: The MicroCT showed that only Am or CTX injection failed to induce HO while the combination of Am and CTX injection successfully induced HO. The incidence of HO was significant in Am + CTX group on day 7 (0% vs 0% vs 83.3%, p = 0.001) and day 14 (0% vs 0% vs 83.3%, p = 0.048). HO was located on the left hindlimb where CTX was injected. Moreover, the bone volume and bone density on day 14 were higher than those on day 7 in Am + CTX group. Histology revealed the evidence of calcification and expression of osteogenic markers in calcification sites in Am + CTX group. CONCLUSION: In summary, the combination of Am and CTX injection could successfully induce dystrophic calcification/HO, which occurs in the location of muscle injury.


Assuntos
Calcinose , Doenças Musculares , Ossificação Heterotópica , Animais , Camundongos , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/etiologia , Osteogênese , Músculo Esquelético , Doenças Musculares/complicações , Modelos Animais de Doenças
7.
J Vis Exp ; (191)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36779602

RESUMO

The high prevalence of debilitating joint diseases like osteoarthritis (OA) poses a high socioeconomic burden. Currently, the available drugs that target joint disorders are mostly palliative. The unmet need for effective disease-modifying OA drugs (DMOADs) has been primarily caused by the absence of appropriate models for studying the disease mechanisms and testing potential DMOADs. Herein, we describe the establishment of a miniature synovial joint-mimicking microphysiological system (miniJoint) comprising adipose, fibrous, and osteochondral tissue components derived from human mesenchymal stem cells (MSCs). To obtain the three-dimensional (3D) microtissues, MSCs were encapsulated in photocrosslinkable methacrylated gelatin before or following differentiation. The cell-laden tissue constructs were then integrated into a 3D-printed bioreactor, forming the miniJoint. Separate flows of osteogenic, fibrogenic, and adipogenic media were introduced to maintain the respective tissue phenotypes. A commonly shared stream was perfused through the cartilage, synovial, and adipose tissues to enable tissue crosstalk. This flow pattern allows the induction of perturbations in one or more of the tissue components for mechanistic studies. Furthermore, potential DMOADs can be tested via either "systemic administration" through all the medium streams or "intraarticular administration" by adding the drugs to only the shared "synovial fluid"-simulating flow. Thus, the miniJoint can serve as a versatile in vitro platform for efficiently studying disease mechanisms and testing drugs in personalized medicine.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/fisiologia , Articulação do Joelho , Líquido Sinovial , Dispositivos Lab-On-A-Chip
8.
Bone ; 168: 116655, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36581258

RESUMO

Heterotopic ossification (HO), including hereditary and acquired HO, is the formation of extraskeletal bone in skeletal muscle and surrounding soft tissues. Acquired HO is often caused by range of motion, explosion injury, nerve injury or burns. Severe HO can lead to pain and limited joint activity, affecting functional rehabilitation and quality of life. Increasing evidence shows that inflammatory processes and mesenchymal stem cells (MSCs) can drive HO. However, explicit knowledge about the specific mechanisms that result in HO and related cell precursors is still limited. Moreover, there are no effective methods to prevent or reduce HO formation. In this review, we provide an update of known risk factors and relevant cellular origins for HO. In particular, we focus on the underlying mechanisms of MSCs in acquired HO, which follow the osteogenic program. We also discuss the latest therapeutic value and implications for acquired HO. Our review highlights the current gaps in knowledge regarding the pathogenesis of acquired HO and identifies potential targets for the prevention and treatment of HO.


Assuntos
Ossificação Heterotópica , Qualidade de Vida , Humanos , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/terapia , Ossificação Heterotópica/patologia , Osteogênese/fisiologia , Osso e Ossos/patologia , Fatores de Risco
9.
Osteoarthr Cartil Open ; 4(4): 100306, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474784

RESUMO

Pain is the predominant symptom of osteoarthritis (OA) that drives patients to seek medical care. Currently, there are no pharmacological treatments that can reverse or halt the progression of OA. Safe and efficacious medications for long-term management of OA pain are also unavailable. Understanding the mechanisms behind OA pain generation at onset and over time is critical for developing effective treatments. In this narrative review, we first summarize our current knowledge on the innervation of the knee joint, and then discuss the molecular mechanism(s) currently thought to underlie OA pain. In particular, we focus on the contribution of each joint component to the generation of pain. Next, the current experimental models for studying OA pain are summarized, and the methods to assess pain in rodents are presented. The potential application of emerging microphysiological systems in OA pain research is especially highlighted. Lastly, we discuss the current challenge in standardizing models and the selection of appropriate systems to address specific questions.

10.
Clin Transl Med ; 12(12): e1112, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536500

RESUMO

BACKGROUND: Human multipotent progenitor cells (hiMPCs) created from induced pluripotent stem cells (iPSCs) represent a new cell source for cartilage regeneration. In most studies, bone morphogenetic proteins (BMPs) are needed to enhance transforming growth factor-ß (TGFß)-induced hiMPC chondrogenesis. In contrast, TGFß alone is sufficient to result in robust chondrogenesis of human primary mesenchymal stromal cells (hMSCs). Currently, the mechanism underlying this difference between hiMPCs and hMSCs has not been fully understood. METHODS: In this study, we first tested different growth factors alone or in combination in stimulating hiMPC chondrogenesis, with a special focus on chondrocytic hypertrophy. The reparative capacity of hiMPCs-derived cartilage was assessed in an osteochondral defect model created in rats. hMSCs isolated from bone marrow were included in all studies as the control. Lastly, a mechanistic study was conducted to understand why hiMPCs and hMSCs behave differently in responding to TGFß. RESULTS: Chondrogenic medium supplemented with TGFß3 and BMP6 led to robust in vitro cartilage formation from hiMPCs with minimal hypertrophy. Cartilage tissue generated from this new method was resistant to osteogenic transition upon subcutaneous implantation and resulted in a hyaline cartilage-like regeneration in osteochondral defects in rats. Interestingly, TGFß3 induced phosphorylation of both Smad2/3 and Smad1/5 in hMSCs, but only activated Smad2/3 in hiMPCs. Supplementing BMP6 activated Smad1/5 and significantly enhanced TGFß's compacity in inducing hiMPC chondrogenesis. The chondro-promoting function of BMP6 was abolished by the treatment of a BMP pathway inhibitor. CONCLUSIONS: This study describes a robust method to generate chondrocytes from hiMPCs with low hypertrophy for hyaline cartilage repair, as well as elucidates the difference between hMSCs and hiMPCs in response to TGFß. Our results also indicated the importance of activating both Smad2/3 and Smad1/5 in the initiation of chondrogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Condrogênese/fisiologia , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Hipertrofia/metabolismo
11.
PLoS One ; 17(9): e0274815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112657

RESUMO

The absence of novel antibiotics for drug-resistant and biofilm-associated infections is a global public health crisis. Antimicrobial peptides explored to address this need have encountered significant development challenges associated with size, toxicity, safety profile, and pharmacokinetics. We designed PLG0206, an engineered antimicrobial peptide, to address these limitations. PLG0206 has broad-spectrum activity against >1,200 multidrug-resistant (MDR) ESKAPEE clinical isolates, is rapidly bactericidal, and displays potent anti-biofilm activity against diverse MDR pathogens. PLG0206 displays activity in diverse animal infection models following both systemic (urinary tract infection) and local (prosthetic joint infection) administration. These findings support continuing clinical development of PLG0206 and validate use of rational design for peptide therapeutics to overcome limitations associated with difficult-to-drug pharmaceutical targets.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Biofilmes , Preparações Farmacêuticas
12.
Biology (Basel) ; 11(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36101377

RESUMO

Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent risk factor for OA, but the mechanisms underlying such a connection are not fully understood. In this review, we first revisit the changes in OA chondrocytes from the perspective of cellular hallmarks of aging. It is concluded that OA chondrocytes share many alterations similar to cellular aging. Next, based on the findings from studies on other cell types and diseases, we propose methods that can potentially reverse osteoarthritic phenotype of chondrocytes back to a healthier state. Lastly, current challenges and future perspectives are summarized.

13.
Stem Cell Res Ther ; 13(1): 400, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927702

RESUMO

BACKGROUND: Traumatic impacts to the articular joint surface are known to lead to cartilage degeneration, as in post-traumatic osteoarthritis (PTOA). Limited progress in the development of disease-modifying OA drugs (DMOADs) may be due to insufficient mechanistic understanding of human disease onset/progression and insufficient in vitro models for disease and therapeutic modeling. In this study, biomimetic hydrogels laden with adult human mesenchymal stromal cells (MSC) are used to examine the effects of traumatic impacts as a model of PTOA. We hypothesize that MSC-based, engineered cartilage models will respond to traumatic impacts in a manner congruent with early PTOA pathogenesis observed in animal models. METHODS: Engineered cartilage constructs were fabricated by encapsulating adult human bone marrow-derived mesenchymal stem cells in a photocross-linkable, biomimetic hydrogel of 15% methacrylated gelatin and promoting chondrogenic differentiation for 28 days in a defined medium and TGF-ß3. Constructs were subjected to traumatic impacts with different strains or 10 ng/ml IL-1ß, as a common comparative method of modeling OA. Cell viability and metabolism, elastic modulus, gene expression, matrix protein production and activation of catabolic enzymes were assessed. RESULTS: Cell viability staining showed that traumatic impacts of 30% strain caused an appropriate level of cell death in engineered cartilage constructs. Gene expression and histo/immunohistochemical analyses revealed an acute decrease in anabolic activities, such as COL2 and ACAN expression, and a rapid increase in catabolic enzyme expression, e.g., MMP13, and inflammatory modulators, e.g., COX2. Safranin O staining and GAG assays together revealed a transient decrease in matrix production 24 h after trauma that recovered within 7 days. The decrease in elastic modulus of engineered cartilage constructs was coincident with GAG loss and mediated by the encapsulated cells. The acute and transient changes observed after traumatic impacts contrasted with progressive changes observed using continual IL-1ß treatment. CONCLUSIONS: Traumatic impacts delivered to engineered cartilage constructs induced PTOA-like changes in the encapsulated cells. While IL-1b may be appropriate in modeling OA pathogenesis, the results of this study indicate it may not be appropriate in understanding the etiology of PTOA. The development of a more physiological in vitro PTOA model may contribute to the more rapid development of DMOADs.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Adulto , Animais , Cartilagem/metabolismo , Cartilagem Articular/metabolismo , Células Cultivadas , Condrogênese/genética , Humanos , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo
14.
Acta Biomater ; 149: 150-166, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779770

RESUMO

Chondrocytic hypertrophy, a phenotype not observed in healthy hyaline cartilage, is often concomitant with the chondrogenesis of human mesenchymal stromal cells (hMSCs). This undesired feature represents one of the major obstacles in applying hMSCs for hyaline cartilage repair. Previously, we developed a method to induce hMSC chondrogenesis within self-generated extracellular matrix (mECM), which formed a cartilage tissue with a lower hypertrophy level than conventional hMSC pellets. In this study, we aimed to test the utility of hypoxia and insulin-like growth factor-1 (IGF1) on further reducing hypertrophy. MSC-mECM constructs were first subjected to chondrogenic culture in normoxic or hypoxic (5%) conditions. The results indicated that hMSC-derived cartilage formed in hypoxic culture displayed a significantly reduced hypertrophy level than normoxic culture. However, hMSC chondrogenesis was also suppressed under hypoxic culture, partially due to the reduced activity of the IGF1 pathway. IGF1 was then supplemented in the chondrogenic medium, which promoted remarkable hMSC chondrogenesis under hypoxic culture. Interestingly, the IGF1-enhanced hMSC chondrogenesis, under hypoxic culture, was not at the expense of promoting significantly increased hypertrophy. Lastly, the cartilage tissues created by hMSCs with different conditions were implanted into osteochondral defect in rats. The results indicated that the tissue formed under hypoxic condition and induced with IGF1-supplemented chondrogenic medium displayed the best reparative results with minimal hypertrophy level. Our results demonstrate a new method to generate hyaline cartilage-like tissue from hMSCs without using exogenous scaffolds, which further pave the road for the clinical application of hMSC-based cartilage tissue engineering. STATEMENT OF SIGNIFICANCE: In this study, hyaline cartilage-like tissues were generated from human mesenchymal stromal cells (hMSCs), which displayed robust capacity in repairing the osteochondral defect in rats. In particular, the extracellular matrix created by hMSCs was used, so no exogenous scaffold was needed. Through a series of optimization, we defined that hypoxic culture and supplementation of insulin-like growth factor-1 (IGF-1) in chondrogenic medium resulted in robust cartilage formation with minimal hypertrophy. We also demonstrated that hypoxic culture suppressed chondrogenesis and hypertrophy through modulating the Wnt/ß-catenin and IGF1 pathways, respectively. Our results demonstrate a new method to generate hyaline cartilage-like tissue from hMSCs without using exogenous scaffolds, which will further pave the road for the clinical application of hMSCs-based cartilage tissue engineering.


Assuntos
Cartilagem Hialina , Células-Tronco Mesenquimais , Animais , Diferenciação Celular/genética , Células Cultivadas , Condrogênese/genética , Matriz Extracelular/metabolismo , Humanos , Hialina , Hipertrofia , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Ratos , Engenharia Tecidual/métodos
15.
Hum Pathol ; 127: 1-11, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35623467

RESUMO

Recently published work on the Glasgow Microenvironment Score (GMS) demonstrated its relevance as a biomarker in TNM II-III colorectal cancer (CRC). Epithelial-mesenchymal transition (EMT) markers in CRC have also shown promise as prognostic biomarkers. This study aimed to assess the relationship between GMS and markers of EMT in stage II-III CRC. A previously constructed tissue microarray of CRC tumors resected between 2000 and 2007 from the Western Infirmary, Stobhill, and Gartnavel General Hospitals in Glasgow was used. Immunohistochemistry was performed for 5 markers of EMT: E-cadherin, ß-catenin, Fascin, Snail, and Zeb1. Two-hundred and thirty-eight TNM II-III CRC with valid scores for all EMT markers and GMS were assessed. The prognostic significance of markers of EMT in this cohort and relationships between GMS and markers of EMT were determined. High cytoplasmic and nuclear ß-catenin and membrane Zeb-1 were significant for worse cancer-specific survival (hazard ratio [HR] 1.67, 95% confidence interval [CI] 1.01-2.76, P < .05; HR 2.22, 95% CI 1.24-3.97, P < .01; and HR 2.00, 95% CI 1.07-3.77, P = .03, respectively). GMS 0 was associated with low membrane Fascin (P = .03), whereas membrane and cytoplasmic Fascin were observed to be highest in GMS 1, but lower in GMS 2. Nuclear ß-catenin was lowest in GMS 0, but highest in GMS 2 (P = .03), in keeping with its role in facilitating EMT. Novel associations were demonstrated between GMS categories and markers of EMT, particularly ß-catenin and Fascin, which require further investigation in independent cohorts.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Biomarcadores , Biomarcadores Tumorais , Caderinas , Neoplasias Colorretais/patologia , Humanos , Microambiente Tumoral , beta Catenina
16.
Adv Sci (Weinh) ; 9(21): e2105909, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35436042

RESUMO

Diseases of the knee joint such as osteoarthritis (OA) affect all joint elements. An in vitro human cell-derived microphysiological system capable of simulating intraarticular tissue crosstalk is desirable for studying etiologies/pathogenesis of joint diseases and testing potential therapeutics. Herein, a human mesenchymal stem cell-derived miniature joint system (miniJoint) is generated, in which engineered osteochondral complex, synovial-like fibrous tissue, and adipose tissue are integrated into a microfluidics-enabled bioreactor. This novel design facilitates different tissues communicating while still maintaining their respective phenotypes. The miniJoint exhibits physiologically relevant changes when exposed to interleukin-1ß mediated inflammation, which are similar to observations in joint diseases in humans. The potential of the miniJoint in predicting in vivo efficacy of drug treatment is confirmed by testing the "therapeutic effect" of the nonsteroidal anti-inflammatory drug, naproxen, as well as four other potential disease-modifying OA drugs. The data demonstrate that the miniJoint recapitulates complex tissue interactions, thus providing a robust organ chip model for the study of joint pathology and the development of novel therapeutic interventions.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Tecido Adiposo/patologia , Humanos , Articulação do Joelho/patologia , Osteoartrite/tratamento farmacológico
17.
Biomaterials ; 283: 121451, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35259584

RESUMO

Currently, most in vitro engineered bone tissues do not contain viable blood vessel systems, so the vascularization depends on post-implantation angiogenesis from the host, which is often insufficient for repairing large bone defects. In this study, we aimed to create pre-vascularized bone-like tissue from human bone marrow-derived mesenchymal stem cells (HBMSCs) within the self-generated extracellular matrix by simulating the developmental endochondral ossification. Afterward, a three-dimensional (3D) culture of human umbilical vein endothelial cells (HUVECs)/HBMSCs was introduced to cover bone-like constructs surface for vascularization. Lastly, the pre-vascularized bone-like tissues were subcutaneously implanted into mice and the quality of newly formed blood vessels and bones were later assessed. We particularly examined whether the pre-existing HUVECs/HBMSCs vascular networks within the implants were able to integrate with the host's blood vessels and facilitate bone formation. Our results showed that this developmentally informed procedure resulted in a robust osteogenic differentiation of HBMSCs. Moreover, the bone-like constructs markedly promoted HUVEC/HBMSCs network formation in vitro. After 28 days of implantation in mice, the experimental group, in which bone-like constructs were pre-vascularized with HUVEC/HBMSCs networks, exhibited significantly more functional blood vessels than the control group that contained HUVEC and HBMSC single cells. Interestingly, increased levels of bone formation and absorption markers were also observed in the pre-vascularized bone-like constructs. Taken together, these findings demonstrated the potential of pre-vascularized bone-like constructs in repairing bone defects.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Osso e Ossos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Neovascularização Fisiológica , Engenharia Tecidual/métodos , Alicerces Teciduais
18.
Front Cell Dev Biol ; 10: 812081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141220

RESUMO

In the past 3 decades, the cartilage repair potential of mesenchymal stromal cells, or mesenchymal stem cells (MSCs), has been widely examined in animal studies. Unfortunately, the phenotype and physical properties of MSC-derived cartilage tissue are not comparable to native hyaline cartilage. In particular, chondrocytic hypertrophy, a phenotype that is not observed in healthy hyaline cartilage, is concomitant with MSC chondrogenesis. Given that hypertrophic chondrocytes potentially undergo apoptosis or convert into osteoblasts, this undesired phenotype needs to be prevented or minimized before MSCs can be used to repair cartilage injuries in the clinic. In this review, we first provide an overview of chondrocytic hypertrophy and briefly summarize current methods for suppressing hypertrophy in MSC-derived cartilage. We then highlight recent progress on modulating the canonical Wnt/ß-catenin pathway for inhibiting hypertrophy. Specially, we discuss the potential crosstalk between Wnt/ß-catenin with other pathways in regulating hypertrophy. Lastly, we explore future perspectives to further understand the role of Wnt/ß-catenin in chondrocytic hypertrophy.

19.
Sci China Life Sci ; 65(2): 309-327, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34109475

RESUMO

Significant cellular senescence has been observed in cartilage harvested from patients with osteoarthritis (OA). In this study, we aim to develop a senescence-relevant OA-like cartilage model for developing disease-modifying OA drugs (DMOADs). Specifically, human bone marrow-derived mesenchymal stromal cells (MSCs) were expanded in vitro up to passage 10 (P10-MSCs). Following their senescent phenotype formation, P10-MSCs were subjected to pellet culture in chondrogenic medium. Results from qRT-PCR, histology, and immunostaining indicated that cartilage generated from P10-MSCs displayed both senescent and OA-like phenotypes without using other OA-inducing agents, when compared to that from normal passage 4 (P4)-MSCs. Interestingly, the same gene expression differences observed between P4-MSCs and P10-MSC-derived cartilage tissues were also observed between the preserved and damaged OA cartilage regions taken from human samples, as demonstrated by RNA Sequencing data and other analysis methods. Lastly, the utility of this senescence-initiated OA-like cartilage model in drug development was assessed by testing several potential DMOADs and senolytics. The results suggest that pre-existing cellular senescence can induce the generation of OA-like changes in cartilage. The P4- and P10-MSCs derived cartilage models also represent a novel platform for predicting the efficacy and toxicity of potential DMOADs on both preserved and damaged cartilage in humans.


Assuntos
Antirreumáticos/farmacologia , Cartilagem/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Osteoartrite/tratamento farmacológico , Antirreumáticos/uso terapêutico , Cartilagem/metabolismo , Cartilagem/patologia , Diferenciação Celular , Células Cultivadas , Senescência Celular/genética , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Senoterapia/farmacologia , Engenharia Tecidual , Transcriptoma
20.
J Exp Orthop ; 8(1): 63, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34401967

RESUMO

PURPOSE: Development and validation of an animal model of labral healing would facilitate translation of novel surgical and biological strategies to improve glenolabral healing. The purpose of this study was to characterize the anatomic and histological properties of the shoulder labrum in rat, rabbit, dog, pig, goat, and humans. Given the demonstrated similarities in size and structural morphology in other joints, it was hypothesized that the goat glenoid with surrounding capsulolabral complex would most closely resemble that of humans in terms of dimensions and structure, as observed grossly and histologically. METHODS: Cadaveric glenohumeral joints from rats (n = 8), New Zealand white rabbits (n = 13), Mongrel dogs (n = 9), Spanish goats (n = 10), Yorkshire pigs (n = 10), and humans (n = 9) were freshly harvested. Photographs were taken of the glenoid with its surrounding capsulolabral complex. Linear dimensions of the glenoid articular surface were measured. It was determined where the capsulolabral complex was continuous with, or recessed from, the articular glenoid surface. The glenoid was divided into 6 equal segments radiating out toward 12, 2, 4, 6, 8, and 10 o'clock positions. Samples were sectioned and stained with Safranin O/Fast green and Mallory Trichrome. Insertion of the capsulolabral tissue onto the glenoid was qualitatively assessed and compared with gross morphology. RESULTS: Dimensions of the goat glenoid most closely paralleled dimensions of the human glenoid. A capsulolabral complex was continuous with the glenoid surface from ~ 9 to 12 o'clock in the rats, 7 to 12 o'clock in rabbits, 5 to 12 o'clock in the dogs, and 9 to 12 o'clock in goats, 6 to 12 o'clock in pigs, and 2 to 8 o'clock in humans. In contrast to humans, no other species demonstrated an organized fibrocartilaginous labrum either macroscopically or histologically. CONCLUSION: The animals in the present study did not possess a discrete fibrocartilaginous labrum by gross or histological evaluation, as directly compared to humans. While models using these animals may be acceptable for examining other shoulder pathologies, they are not adequate to evaluate labral pathology. LEVEL OF EVIDENCE: Basic Science Study; Anatomy and Histology; Cadaveric Animal Model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...