Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(5): 100303, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37228754

RESUMO

Although the role of RNA binding proteins (RBPs) in extracellular RNA (exRNA) biology is well established, their exRNA cargo and distribution across biofluids are largely unknown. To address this gap, we extend the exRNA Atlas resource by mapping exRNAs carried by extracellular RBPs (exRBPs). This map was developed through an integrative analysis of ENCODE enhanced crosslinking and immunoprecipitation (eCLIP) data (150 RBPs) and human exRNA profiles (6,930 samples). Computational analysis and experimental validation identified exRBPs in plasma, serum, saliva, urine, cerebrospinal fluid, and cell-culture-conditioned medium. exRBPs carry exRNA transcripts from small non-coding RNA biotypes, including microRNA (miRNA), piRNA, tRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Y RNA, and lncRNA, as well as protein-coding mRNA fragments. Computational deconvolution of exRBP RNA cargo reveals associations of exRBPs with extracellular vesicles, lipoproteins, and ribonucleoproteins across human biofluids. Overall, we mapped the distribution of exRBPs across human biofluids, presenting a resource for the community.

2.
iScience ; 25(8): 104653, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35958027

RESUMO

The extracellular RNA communication consortium (ERCC) is an NIH-funded program aiming to promote the development of new technologies, resources, and knowledge about exRNAs and their carriers. After Phase 1 (2013-2018), Phase 2 of the program (ERCC2, 2019-2023) aims to fill critical gaps in knowledge and technology to enable rigorous and reproducible methods for separation and characterization of both bulk populations of exRNA carriers and single EVs. ERCC2 investigators are also developing new bioinformatic pipelines to promote data integration through the exRNA atlas database. ERCC2 has established several Working Groups (Resource Sharing, Reagent Development, Data Analysis and Coordination, Technology Development, nomenclature, and Scientific Outreach) to promote collaboration between ERCC2 members and the broader scientific community. We expect that ERCC2's current and future achievements will significantly improve our understanding of exRNA biology and the development of accurate and efficient exRNA-based diagnostic, prognostic, and theranostic biomarker assays.

3.
Front Genet ; 12: 778416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047007

RESUMO

We now know RNA can survive the harsh environment of biofluids when encapsulated in vesicles or by associating with lipoproteins or RNA binding proteins. These extracellular RNA (exRNA) play a role in intercellular signaling, serve as biomarkers of disease, and form the basis of new strategies for disease treatment. The Extracellular RNA Communication Consortium (ERCC) hosted a two-day online workshop (April 19-20, 2021) on the unique challenges of exRNA data analysis. The goal was to foster an open dialog about best practices and discuss open problems in the field, focusing initially on small exRNA sequencing data. Video recordings of workshop presentations and discussions are available (https://exRNA.org/exRNAdata2021-videos/). There were three target audiences: experimentalists who generate exRNA sequencing data, computational and data scientists who work with those groups to analyze their data, and experimental and data scientists new to the field. Here we summarize issues explored during the workshop, including progress on an effort to develop an exRNA data analysis challenge to engage the community in solving some of these open problems.

4.
Cell ; 177(2): 446-462.e16, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951671

RESUMO

Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of 10 exRNA isolation methods across 5 biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNA-seq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle (EV)-, ribonucleoprotein (RNP)-, and high-density lipoprotein (HDL)-specific miRNA signatures in each profile. An interactive web-based application (miRDaR) was developed to help investigators select the optimal exRNA isolation method for their studies. miRDar provides comparative statistics for all expressed miRNAs or a selected subset of miRNAs in the desired biofluid for each exRNA isolation method and returns a ranked list of exRNA isolation methods prioritized by complexity, expression level, and reproducibility. These results will improve reproducibility and stimulate further progress in exRNA biomarker development.


Assuntos
Ácidos Nucleicos Livres/isolamento & purificação , MicroRNA Circulante/isolamento & purificação , RNA/isolamento & purificação , Adulto , Líquidos Corporais/química , Linhagem Celular , Vesículas Extracelulares/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Masculino , MicroRNAs/isolamento & purificação , MicroRNAs/metabolismo , RNA/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos
5.
Cell ; 177(2): 463-477.e15, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951672

RESUMO

To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously. To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.


Assuntos
Comunicação Celular/fisiologia , RNA/metabolismo , Adulto , Líquidos Corporais/química , Ácidos Nucleicos Livres/metabolismo , MicroRNA Circulante/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Software
6.
Nature ; 512(7515): 445-8, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164755

RESUMO

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.


Assuntos
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Cromatina/genética , Análise por Conglomerados , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/metabolismo , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Genéticos , Anotação de Sequência Molecular , Regiões Promotoras Genéticas/genética , Pupa/genética , Pupa/crescimento & desenvolvimento , RNA não Traduzido/genética , Análise de Sequência de RNA
7.
Viruses ; 5(7): 1664-81, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23881275

RESUMO

The West Nile virus (WNV) is an emerging infection of biodefense concern and there are no available treatments or vaccines. Here we used a high-throughput method based on a novel gene expression analysis, RNA-Seq, to give a global picture of differential gene expression by primary human macrophages of 10 healthy donors infected in vitro with WNV. From a total of 28 million reads per sample, we identified 1,514 transcripts that were differentially expressed after infection. Both predicted and novel gene changes were detected, as were gene isoforms, and while many of the genes were expressed by all donors, some were unique. Knock-down of genes not previously known to be associated with WNV resistance identified their critical role in control of viral infection. Our study distinguishes both common gene pathways as well as novel cellular responses. Such analyses will be valuable for translational studies of susceptible and resistant individuals--and for targeting therapeutics--in multiple biological settings.


Assuntos
Resistência à Doença/genética , Perfilação da Expressão Gênica , Macrófagos/imunologia , Macrófagos/virologia , RNA/biossíntese , RNA/genética , Vírus do Nilo Ocidental/imunologia , Adulto , Feminino , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Adulto Jovem
8.
Science ; 330(6012): 1775-87, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-21177976

RESUMO

We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.


Assuntos
Caenorhabditis elegans/genética , Cromossomos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma Helmíntico , Anotação de Sequência Molecular , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Cromossomos/genética , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Biologia Computacional/métodos , Sequência Conservada , Evolução Molecular , Redes Reguladoras de Genes , Genes de Helmintos , Genômica/métodos , Histonas/metabolismo , Modelos Genéticos , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Trends Microbiol ; 18(11): 494-503, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20832320

RESUMO

Microbes have chemotactic signaling systems that enable them to detect and follow chemical gradients in their environments. The core of these sensory systems consists of chemoreceptor proteins coupled to the CheA kinase via the scaffold or coupler protein CheW. Some bacterial chemotaxis systems replace or augment CheW with a related protein, CheV, which is less well understood. CheV consists of a CheW domain fused to a receiver domain that is capable of being phosphorylated. Our review of the literature, as well as comparisons of the CheV and CheW sequence and structure, suggest that CheV proteins conserve CheW residues that are crucial for coupling. Phosphorylation of the CheV receiver domain might adjust the efficiency of its coupling and thus allow the system to modulate the response to chemical stimuli in an adaptation process.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Fatores Quimiotáticos/metabolismo , Quimiotaxia , Transdução de Sinais , Bactérias/citologia , Proteínas de Bactérias/genética , Fatores Quimiotáticos/genética , Fosforilação
10.
Nat Rev Genet ; 11(8): 559-71, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20628352

RESUMO

Most of the human genome consists of non-protein-coding DNA. Recently, progress has been made in annotating these non-coding regions through the interpretation of functional genomics experiments and comparative sequence analysis. One can conceptualize functional genomics analysis as involving a sequence of steps: turning the output of an experiment into a 'signal' at each base pair of the genome; smoothing this signal and segmenting it into small blocks of initial annotation; and then clustering these small blocks into larger derived annotations and networks. Finally, one can relate functional genomics annotations to conserved units and measures of conservation derived from comparative sequence analysis.


Assuntos
DNA Intergênico/genética , Genoma Humano , Genômica/métodos , Animais , Mapeamento Cromossômico , Sequência Conservada , Elementos de DNA Transponíveis , Genômica/tendências , Humanos , Pseudogenes , Elementos Reguladores de Transcrição , Alinhamento de Sequência , Análise de Sequência de DNA , Sequências de Repetição em Tandem
11.
Proc Natl Acad Sci U S A ; 107(20): 9186-91, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439753

RESUMO

The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.


Assuntos
Algoritmos , Evolução Molecular , Redes Reguladoras de Genes/genética , Genoma Bacteriano/genética , Metáfora , Design de Software , Escherichia coli
12.
PLoS One ; 5(1): e8121, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20126643

RESUMO

We performed computational reconstruction of the in silico gene regulatory networks in the DREAM3 Challenges. Our task was to learn the networks from two types of data, namely gene expression profiles in deletion strains (the 'deletion data') and time series trajectories of gene expression after some initial perturbation (the 'perturbation data'). In the course of developing the prediction method, we observed that the two types of data contained different and complementary information about the underlying network. In particular, deletion data allow for the detection of direct regulatory activities with strong responses upon the deletion of the regulator while perturbation data provide richer information for the identification of weaker and more complex types of regulation. We applied different techniques to learn the regulation from the two types of data. For deletion data, we learned a noise model to distinguish real signals from random fluctuations using an iterative method. For perturbation data, we used differential equations to model the change of expression levels of a gene along the trajectories due to the regulation of other genes. We tried different models, and combined their predictions. The final predictions were obtained by merging the results from the two types of data. A comparison with the actual regulatory networks suggests that our approach is effective for networks with a range of different sizes. The success of the approach demonstrates the importance of integrating heterogeneous data in network reconstruction.


Assuntos
Técnicas de Silenciamento de Genes , Genes Reguladores , Modelos Teóricos
13.
Sci Signal ; 2(81): pe44, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19638611

RESUMO

The era of genome sequencing has produced long lists of the molecular parts from which cellular machines are constructed. A fundamental goal in systems biology is to understand how cellular behavior emerges from the interaction in time and space of genetically encoded molecular parts, as well as nongenetically encoded small molecules. Networks provide a natural framework for the organization and quantitative representation of all the available data about molecular interactions. The structural and dynamic properties of molecular networks have been the subject of intense research. Despite major advances, bridging network structure to dynamics-and therefore to behavior-remains challenging. A key concept of modern engineering that recurs in the functional analysis of biological networks is modularity. Most approaches to molecular network analysis rely to some extent on the assumption that molecular networks are modular-that is, they are separable and can be studied to some degree in isolation. We describe recent advances in the analysis of modularity in biological networks, focusing on the increasing realization that a dynamic perspective is essential to grouping molecules into modules and determining their collective function.


Assuntos
Modelos Biológicos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Quinases raf/metabolismo , Animais , Comunicação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cinética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células PC12 , Ratos
14.
Methods Enzymol ; 422: 1-31, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17628132

RESUMO

Molecular machinery governing bacterial chemotaxis consists of the CheA-CheY two-component system, an array of specialized chemoreceptors, and several auxiliary proteins. It has been studied extensively in Escherichia coli and, to a significantly lesser extent, in several other microbial species. Emerging evidence suggests that homologous signal transduction pathways regulate not only chemotaxis, but several other cellular functions in various bacterial species. The availability of genome sequence data for hundreds of organisms enables productive study of this system using comparative genomics and protein sequence analysis. This chapter describes advances in genomics of the chemotaxis signal transduction system, provides information on relevant bioinformatics tools and resources, and outlines approaches toward developing a computational framework for predicting important biological functions from raw genomic data based on available experimental evidence.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/fisiologia , Proteínas de Membrana/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Quimiotaxia/genética , Quimiotaxia/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Variação Genética , Histidina Quinase , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Moleculares , Conformação Proteica , Transdução de Sinais/fisiologia
15.
Proc Natl Acad Sci U S A ; 104(8): 2885-90, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17299051

RESUMO

As an important model for transmembrane signaling, methyl-accepting chemotaxis proteins (MCPs) have been extensively studied by using genetic, biochemical, and structural techniques. However, details of the molecular mechanism of signaling are still not well understood. The availability of genomic information for hundreds of species enables the identification of features in protein sequences that are conserved over long evolutionary distances and thus are critically important for function. We carried out a large-scale comparative genomic analysis of the MCP signaling and adaptation domain family and identified features that appear to be critical for receptor structure and function. Based on domain length and sequence conservation, we identified seven major MCP classes and three distinct structural regions within the cytoplasmic domain: signaling, methylation, and flexible bundle subdomains. The flexible bundle subdomain, not previously recognized in MCPs, is a conserved element that appears to be important for signal transduction. Remarkably, the N- and C-terminal helical arms of the cytoplasmic domain maintain symmetry in length and register despite dramatic variation, from 24 to 64 7-aa heptads in overall domain length. Loss of symmetry is observed in some MCPs, where it is concomitant with specific changes in the sensory module. Each major MCP class has a distinct pattern of predicted methylation sites that is well supported by experimental data. Our findings indicate that signaling and adaptation functions within the MCP cytoplasmic domain are tightly coupled, and that their coevolution has contributed to the significant diversity in chemotaxis mechanisms among different organisms.


Assuntos
Adaptação Fisiológica , Bactérias/química , Proteínas de Bactérias/química , Evolução Molecular , Genômica , Proteínas de Membrana/química , Transdução de Sinais , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Membrana/classificação , Proteínas Quimiotáticas Aceptoras de Metil , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...