Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276878

RESUMO

Inflammasome activation is associated with disease severity in patients who are infected with SARS-CoV-2 and influenza viruses, but the specific cell types involved in inflammasome activation, as well as the balance of inflammasome activation versus viral replication in COVID-19 exacerbation and the induction of patient death, are unknown. In this study, we assessed lung autopsies of 47 COVID-19 and 12 influenza fatal cases and examined the inflammatory profiles and inflammasome activation; additionally, we correlated these factors with clinical and histopathological patient conditions. We observed an overall stronger inflammasome activation in lethal cases of SARS-CoV-2 compared to influenza and found a different profile of inflammasome-activating cells during these diseases. In COVID-19 patients, inflammasome activation is mostly mediated by macrophages and endothelial cells, whereas in influenza, type I and type II pneumocytes contribute more significantly. An analysis of gene expression allowed for the classification of COVID-19 patients into two different clusters. Cluster 1 (n=16 patients) died with higher viral loads and exhibited a reduced inflammatory profile than Cluster 2 (n=31 patients). Illness time, mechanical ventilation time, pulmonary fibrosis, respiratory functions, histopathological status, thrombosis, and inflammasome activation significantly differed between the two clusters. Our data demonstrated two distinct profiles in lethal cases of COVID-19, thus indicating that the balance of viral replication and inflammasome-mediated pulmonary inflammation may lead to different clinical conditions, yet both lead to patient death. An understanding of this process is critical for decisions between immune-mediated or antiviral-mediated therapies for the treatment of critical cases of COVID-19.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-489676

RESUMO

COVID-19 is characterized by severe acute lung injury, which is associated with neutrophils infiltration and release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potential deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472155

RESUMO

The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib) or in advanced clinical trials. We have tested 45 FDA-approved kinase inhibitors in vitro against murine hepatitis virus (MHV) as a model of SARS-CoV-2 replication and identified 12 showing inhibition in the delayed brain tumor (DBT) cell line. Vandetanib, which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), and the RET-tyrosine kinase showed the most promising results on inhibition versus toxic effect on SARS-CoV-2-infected Caco-2 and A549-hACE2 cells (IC50 0.79 M) while also showing a reduction of > 3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, TNF-, and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib rescued the decreased IFN-1{beta} caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved vandetanib is a potential therapeutic candidate for COVID-19 positioned for follow up in clinical trials either alone or in combination with other drugs to address the cytokine storm associated with this viral infection.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-462449

RESUMO

There are currently relatively few small-molecule antiviral drugs that are either approved or emergency approved for use against SARS-CoV-2. One of these is remdesivir, which was originally repurposed from its use against Ebola and functions by causing early RNA chain termination. We used this as justification to evaluate three molecules we had previously identified computationally with antiviral activity against Ebola and Marburg. Out of these we previously identified pyronaridine, which inhibited the SARS-CoV-2 replication in A549-ACE2 cells. Herein, the in vivo efficacy of pyronaridine has now been assessed in a K18-hACE transgenic mouse model of COVID-19. Pyronaridine treatment demonstrated a statistically significant reduction of viral load in the lungs of SARS CoV-2 infected mice. Furthermore, the pyronaridine treated group reduced lung pathology, which was also associated with significant reduction in the levels of pro-inflammatory cytokines/chemokine and cell infiltration. Notably, pyronaridine inhibited the viral PLpro activity in vitro (IC50 of 1.8 {micro}M) without any effect on Mpro, indicating a possible molecular mechanism involved in its ability to inhibit SARS-CoV-2 replication. Interestingly, pyronaridine also selectively inhibits the host kinase CAMK1 (IC50 of 2.4 {micro}M). We have also generated several pyronaridine analogs to assist in understanding the structure activity relationship for PLpro inhibition. Our results indicate that pyronaridine is a potential therapeutic candidate for COVID-19. One sentence summaryThere is currently intense interest in discovering small molecules with direct antiviral activity against the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Pyronaridine, an antiviral drug with in vitro activity against Ebola, Marburg and SARS-CoV-2 has now statistically significantly reduced the viral load in mice along with IL-6, TNF-, and IFN-{beta} ultimately demonstrating a protective effect against lung damage by infection to provide a new potential treatment for testing clinically.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251504

RESUMO

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppress macrophage anti-inflammation and efficient tissue repair programs and provide mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20168872

RESUMO

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1{beta} and IL-18. Although the participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease is unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and it is active in COVID-19, influencing the clinical outcome of the disease. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of post-mortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that the inflammasome is key in the pathophysiology of the disease, indicating this platform as a marker of disease severity and a potential therapeutic target for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...