Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807753

RESUMO

Strategies and coping mechanisms for stress tolerance under sub-optimal nutrition conditions could provide important guidelines for developing selection criteria in sustainable agriculture. Nitrogen (N) is one of the major nutrients limiting the growth and yield of crop plants, among which wheat is probably the most substantial to human diet worldwide. Physiological status and photosynthetic capacity of two contrasting wheat genotypes (old Slomer and modern semi-dwarf Enola) were evaluated at the seedling stage to assess how N supply affected osmotic stress tolerance and capacity of plants to survive drought periods. It was evident that higher N input in both varieties contributed to better performance under dehydration. The combination of lower N supply and water deprivation (osmotic stress induced by polyethylene glycol treatment) led to greater damage of the photosynthetic efficiency and a higher degree of oxidative stress than the individually applied stresses. The old wheat variety had better N assimilation efficiency, and it was also the one with better performance under N deficiency. However, when both N and water were deficient, the modern variety demonstrated better photosynthetic performance. It was concluded that different strategies for overcoming osmotic stress alone or in combination with low N could be attributed to differences in the genetic background. Better performance of the modern variety conceivably indicated that semi-dwarfing (Rht) alleles might have a beneficial effect in arid regions and N deficiency conditions.

2.
Plant Physiol Biochem ; 81: 16-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24811616

RESUMO

The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records.


Assuntos
Clorofila/metabolismo , Oxigênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Solanum lycopersicum/metabolismo , Zea mays/metabolismo , Dióxido de Carbono/metabolismo , Clorofila A , Transporte de Elétrons , Fluorescência , Alimentos , Luz , Solanum lycopersicum/efeitos da radiação , Fotoquímica , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Análise de Componente Principal , Especificidade da Espécie , Estresse Fisiológico , Zea mays/efeitos da radiação
3.
Biochim Biophys Acta ; 1817(8): 1490-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609146

RESUMO

Water deficit is one of the most important environmental factors limiting sustainable crop yields and it requires a reliable tool for fast and precise quantification. In this work we use simultaneously recorded signals of photoinduced prompt fluorescence (PF) and delayed fluorescence (DF) as well as modulated reflection (MR) of light at 820nm for analysis of the changes in the photosynthetic activity in detached bean leaves during drying. Depending on the severity of the water deficit we identify different changes in the primary photosynthetic processes. When the relative water content (RWC) is decreased to 60% there is a parallel decrease in the ratio between the rate of excitation trapping in the Photosystem (PS) II reaction center and the rate of reoxidation of reduced PSII acceptors. A further decrease of RWC to 20% suppresses the electron transfer from the reduced plastoquinone pool to the PSI reaction center. At RWC below values 15%, the reoxidation of the photoreduced primary quinone acceptor of PSII, Q(A)(-), is inhibited and at less than 5%, the primary photochemical reactions in PSI and II are inactivated. Using the collected sets of PF, DF and MR signals, we construct and train an artificial neural network, capable of recognizing the RWC in a series of "unknown" samples with a correlation between calculated and gravimetrically determined RWC values of about R(2)≈0.98. Our results demonstrate that this is a reliable method for determination of RWC in detached leaves and after further development it could be used for quantifying of drought stress of crop plants in situ. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Secas , Redes Neurais de Computação , Fotossíntese , Folhas de Planta/metabolismo , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo
4.
Open Med Inform J ; 2: 138-48, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19593455

RESUMO

By combining mathematical methods with the morphological analysis of the semicircular canals of the axolotl (Ambystoma tigrinum), a system of differential equations describing the mechanical coupling in the semicircular canals was obtained. The coefficients of this system have an explicit physiological meaning that allows for the introduction of morphological and dynamical parameters directly into the differential equations. The cupula of the semicircular canals was modeled both as a piston and as a membrane (diaphragm like), and the duct canals as toroids with two main regions: i) the semicircular canal duct and, ii) a larger diameter region corresponding to the ampulla and the utricle. The endolymph motion was described by the Navier-Stokes equations. The analysis of the model demonstrated that cupular behavior dynamics under periodic stimulation is equivalent in both the piston and the membrane cupular models, thus a general model in which the detailed cupular structure is not relevant was derived.

5.
J Synchrotron Radiat ; 10(Pt 5): 384-6, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12944627

RESUMO

New kinetics data have been obtained for a Ni + Al self-propagating high-temperature synthesis (SHS). In order to achieve a time resolution of 0.005 s it was necessary to increase the intensity of the incident beam and the aperture of the X-ray detector. A graphite monochromator with a wavelength bandwidth of deltalambda/lambda approximately 10(-2), instead of the traditional 10(-3)-10(-4), and a two-dimensional detector (DED-5) were used for these purposes. Analysis of the kinetics data indicated that the main chemical transformations occurred during 60-70 ms. The DED-5 detector also helped to establish that the recrystallization process of intermetallide NiAl took place some time after the SHS, and the formation of crystallites could be seen as separate Bragg spots on the detector image.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...