Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1706, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717592

RESUMO

Metabolic dysfunction, partly driven by altered liver function, predisposes to coronary artery disease (CAD), but the role of liver in vulnerable atherosclerotic plaque development remains unclear. Here we produced hepatocyte-like cells (HLCs) from 27 induced pluripotent stem cell (iPSC) lines derived from 15 study subjects with stable CAD (n = 5), acute CAD (n = 5) or healthy controls (n = 5). We performed a miRNA microarray screening throughout the differentiation, as well as compared iPSC-HLCs miRNA profiles of the patient groups to identify miRNAs involved in the development of CAD. MicroRNA profile changed during differentiation and started to resemble that of the primary human hepatocytes. In the microarray, 35 and 87 miRNAs were statistically significantly deregulated in the acute and stable CAD patients, respectively, compared to controls. Down-regulation of miR-149-5p, -92a-3p and -221-3p, and up-regulation of miR-122-5p was verified in the stable CAD patients when compared to other groups. The predicted targets of deregulated miRNAs were enriched in pathways connected to insulin signalling, inflammation and lipid metabolism. The iPSC-HLCs derived from stable CAD patients with extensive lesions had a distinct genetic miRNA profile possibly linked to metabolic dysfunction, potentially explaining the susceptibility to developing CAD. The iPSC-HLCs from acute CAD patients with only the acute rupture in otherwise healthy coronaries did not present a distinct miRNA profile, suggesting that hepatic miRNAs do not explain susceptibility to plaque rupture.


Assuntos
Doença da Artéria Coronariana , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Isquemia Miocárdica , Placa Aterosclerótica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Metabolismo dos Lipídeos/genética , Hepatócitos/metabolismo , Placa Aterosclerótica/metabolismo , Isquemia Miocárdica/metabolismo
2.
Cells ; 9(5)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392813

RESUMO

Mutations in the HERG gene encoding the potassium ion channel HERG, represent one of the most frequent causes of long QT syndrome type-2 (LQT2). The same genetic mutation frequently presents different clinical phenotypes in the family. Our study aimed to model LQT2 and study functional differences between the mutation carriers of variable clinical phenotypes. We derived human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) from asymptomatic and symptomatic HERG mutation carriers from the same family. When comparing asymptomatic and symptomatic single LQT2 hiPSC-CMs, results from allelic imbalance, potassium current density, and arrhythmicity on adrenaline exposure were similar, but a difference in Ca2+ transients was observed. The major differences were, however, observed at aggregate level with increased susceptibility to arrhythmias on exposure to adrenaline or potassium channel blockers on CM aggregates derived from the symptomatic individual. The effect of this mutation was modeled in-silico which indicated the reactivation of an inward calcium current as one of the main causes of arrhythmia. Our in-vitro hiPSC-CM model recapitulated major phenotype characteristics observed in LQT2 mutation carriers and strong phenotype differences between LQT2 asymptomatic vs. symptomatic were revealed at CM-aggregate level.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Síndrome do QT Longo/genética , Síndrome do QT Longo/patologia , Modelos Biológicos , Mutação/genética , Miócitos Cardíacos/patologia , Adulto , Alelos , Estudos de Casos e Controles , Agregação Celular , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ativação do Canal Iônico , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo
3.
Sci Rep ; 9(1): 3562, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837492

RESUMO

Hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells (iPSCs) provide a renewable source of cells for drug discovery, disease modelling and cell-based therapies. Here, by using GRO-Seq we provide the first genome-wide analysis of the nascent RNAs in iPSCs, HLCs and primary hepatocytes to extend our understanding of the transcriptional changes occurring during hepatic differentiation process. We demonstrate that a large fraction of hepatocyte-specific genes are regulated at transcriptional level and identify hundreds of differentially expressed non-coding RNAs (ncRNAs), including primary miRNAs (pri-miRNAs) and long non-coding RNAs (lncRNAs). Differentiation induced alternative transcription start site (TSS) usage between the cell types as evidenced for miR-221/222 and miR-3613/15a/16-1 clusters. We demonstrate that lncRNAs and coding genes are tightly co-expressed and could thus be co-regulated. Finally, we identified sets of transcriptional regulators that might drive transcriptional changes during hepatocyte differentiation. These included RARG, E2F1, SP1 and FOXH1, which were associated with the down-regulated transcripts, and hepatocyte-specific TFs such as FOXA1, FOXA2, HNF1B, HNF4A and CEBPA, as well as RXR, PPAR, AP-1, JUNB, JUND and BATF, which were associated with up-regulated transcripts. In summary, this study clarifies the role of regulatory ncRNAs and TFs in differentiation of HLCs from iPSCs.


Assuntos
Reprogramação Celular/genética , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Transcriptoma , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética
4.
J Cell Physiol ; 234(4): 3744-3761, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146765

RESUMO

Hepatocyte-like cells (HLCs) differentiated from human-induced pluripotent stem cells offer an alternative platform to primary human hepatocytes (PHHs) for studying the lipid metabolism of the liver. However, despite their great potential, the lipid profile of HLCs has not yet been characterized. Here, we comprehensively studied the lipid profile and fatty acid (FA) metabolism of HLCs and compared them with the current standard hepatocyte models: HepG2 cells and PHHs. We differentiated HLCs by five commonly used methods from three cell lines and thoroughly characterized them by gene and protein expression. HLCs generated by each method were assessed for their functionality and the ability to synthesize, elongate, and desaturate FAs. In addition, lipid and FA profiles of HLCs were investigated by both mass spectrometry and gas chromatography and then compared with the profiles of PHHs and HepG2 cells. HLCs resembled PHHs by expressing hepatic markers: secreting albumin, lipoprotein particles, and urea, and demonstrating similarities in their lipid and FA profile. Unlike HepG2 cells, HLCs contained low levels of lysophospholipids similar to the content of PHHs. Furthermore, HLCs were able to efficiently use the exogenous FAs available in their medium and simultaneously modify simple lipids into more complex ones to fulfill their needs. In addition, we propose that increasing the polyunsaturated FA supply of the culture medium may positively affect the lipid profile and functionality of HLCs. In conclusion, our data showed that HLCs provide a functional and relevant model to investigate human lipid homeostasis at both molecular and cellular levels.


Assuntos
Diferenciação Celular , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Metabolismo dos Lipídeos , Forma Celular , Cromatografia Gasosa , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/genética , Lipidômica/métodos , Lisofosfolipídeos/metabolismo , Espectrometria de Massas , Fenótipo , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA