Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38261629

RESUMO

RATIONALE: The airway microbiome has the potential to shape COPD pathogenesis, but its relationship to outcomes in milder disease is unestablished. OBJECTIVES: Identify sputum microbiome characteristics associated with markers of COPD in participants of the SubPopulations and InteRmediate Outcome Measures of COPD Study (SPIROMICS). METHODS: Sputum DNA from 877 participants were analyzed using 16S rRNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic and muco-inflammatory markers, including longitudinal lung function trajectory, were examined. MEASUREMENTS AND MAIN RESULTS: Participant data represented predominantly milder disease (GOLD 0-2: N=732/877). Phylogenetic diversity (range of different species within a sample) correlated positively with baseline lung function, declined with higher GOLD stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (p<0.001). In co-variate adjusted regression models, organisms robustly associated with better lung function included members of Alloprevotella, Oribacterium, and Veillonella. Conversely, lower lung function, greater symptoms and radiographic measures of small airway disease associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features also associated with lung function trajectory during SPIROMICS follow up (stable/improved, decliner, or rapid decliner). The 'stable/improved' group (slope of FEV1 regression ≥ 66th percentile) had higher bacterial diversity at baseline, associated with enrichment in Prevotella, Leptotrichia, and Neisseria. In contrast, the 'rapid decliner' group (FEV1 slope ≤ 33rd percentile) had significantly lower baseline diversity, associated with enrichment in Streptococcus. CONCLUSIONS: In SPIROMICS baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.

3.
Am J Respir Crit Care Med ; 209(4): 374-389, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016030

RESUMO

Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1ß contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1ß-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1ß-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.


Assuntos
Bronquiectasia , Fibrose Cística , Humanos , Bronquíolos , Dilatação Patológica , Bronquiectasia/genética , Mucinas/metabolismo , Interleucina-1beta , Fibrose , RNA , Mucina-5AC/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-37848612

RESUMO

BACKGROUND: Understanding lung deposition dose of black carbon is critical to fully reconcile epidemiological evidence of combustion particles induced health effects and inform the development of air quality metrics concerning black carbon. Macrophage carbon load (MaCL) is a novel cytology method that quantifies lung deposition dose of black carbon, however it has limited feasibility in large-scale epidemiological study due to the labor-intensive manual counting. OBJECTIVE: To assess the association between MaCL and episodic elevation of combustion particles; to develop artificial intelligence based counting algorithm for MaCL assay. METHODS: Sputum slides were collected during episodic elevation of ambient PM2.5 (n = 49, daily PM2.5 > 10 µg/m3 for over 2 weeks due to wildfire smoke intrusion in summer and local wood burning in winter) and low PM2.5 period (n = 39, 30-day average PM2.5 < 4 µg/m3) from the Lovelace Smokers cohort. RESULTS: Over 98% individual carbon particles in macrophages had diameter <1 µm. MaCL levels scored manually were highly responsive to episodic elevation of ambient PM2.5 and also correlated with lung injury biomarker, plasma CC16. The association with CC16 became more robust when the assessment focused on macrophages with higher carbon load. A Machine-Learning algorithm for Engulfed cArbon Particles (MacLEAP) was developed based on the Mask Region-based Convolutional Neural Network. MacLEAP algorithm yielded excellent correlations with manual counting for number and area of the particles. The algorithm produced associations with ambient PM2.5 and plasma CC16 that were nearly identical in magnitude to those obtained through manual counting. IMPACT STATEMENT: Understanding lung black carbon deposition is crucial for comprehending health effects of combustion particles. We developed "Machine-Learning algorithm for Engulfed cArbon Particles (MacLEAP)", the first artificial intelligence algorithm for quantifying airway macrophage black carbon. Our study bolstered the algorithm with more training images and its first use in air pollution epidemiology. We revealed macrophage carbon load as a sensitive biomarker for heightened ambient combustion particles due to wildfires and residential wood burning.

5.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895029

RESUMO

Proteases such as neutrophil elastase cleave and activate the epithelial sodium channel (ENaC), causing airway dehydration. Our current study explores the impact of increased protease levels in vapers' airways on ENaC activity and airway dehydration. Human bronchial epithelial cultures (HBECs) were exposed to bronchoalveolar lavage fluid (BALF) from non-smokers, smokers and vapers. Airway surface liquid (ASL) height was measured by confocal microscopy as a marker of hydration. ENaC cleavage was measured by Western blotting. Human peripheral blood neutrophils were treated with a menthol-flavored e-liquid (Juul), and the resulting secretions were added to HBECs. BALF from smokers and vapers significantly and equally increased ENaC activity and decreased ASL height. The ASL height decrease was attenuated by protease inhibitors. Non-smokers' BALF had no effect on ENaC or ASL height. BALF from smokers and vapers, but not non-smokers, induced ENaC cleavage. E-liquid-treated neutrophil secretions cleaved ENaC and decreased ASL height. Our study demonstrated that elevated protease levels in vapers' airways have functional significance since they can activate ENaC, resulting in airway dehydration. Lung dehydration contributes to diseases like cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and asthma. Thus, our data predict that vaping, like smoking, will cause airway surface dehydration that likely leads to lung disease.


Assuntos
Vaping , Humanos , Vaping/efeitos adversos , Proteólise , Desidratação/metabolismo , Mucosa Respiratória/metabolismo , Pulmão/metabolismo , Canais Epiteliais de Sódio/metabolismo
6.
J Allergy Clin Immunol Glob ; 2(4): 100177, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37876758

RESUMO

Background: Air pollutants, including particulates from wood smoke, are a significant cause of exacerbation of lung disease. γ-Tocopherol is an anti-inflammatory isoform of vitamin E that has been shown to reduce allergen-, ozone-, and endotoxin-induced inflammation. Objective: The objective of this study was to determine whether γ-tocopherol would prevent experimental wood smoke-induced airway inflammation in humans. Methods: This was a randomized, placebo-controlled clinical trial testing the effect of a short course of γ-tocopherol-enriched supplementation on airway inflammation following a controlled exposure to wood smoke particulates. Results: Short-course γ-tocopherol intervention did not reduce wood smoke-induced neutrophilic airway inflammation, but it did prevent wood smoke-induced eosinophilic airway inflammation. Conclusion: γ-Tocopherol is a potential intervention for exacerbation of allergic airway inflammation, but further study examining longer dosing periods is required.

7.
Allergy ; 78(12): 3077-3102, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37702095

RESUMO

Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.


Assuntos
Eosinófilos , Humanos , Biomarcadores
8.
Curr Allergy Asthma Rep ; 23(9): 541-553, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37440094

RESUMO

PURPOSE OF REVIEW: To provide a review of emerging literature describing the impact of diet on the respiratory response to air pollution in asthma. RECENT FINDINGS: Asthma phenotyping (observable characteristics) and endotyping (mechanistic pathways) have increased the specificity of diagnostic and treatment pathways and opened the doors to the identification of subphenotypes with enhanced susceptibility to exposures and interventions. Mechanisms underlying the airway immune response to air pollution are still being defined but include oxidative stress, inflammation, and activation of adaptive and innate immune responses, with genetic susceptibility highlighted. Of these, neutrophil recruitment and activation appear prominent; however, understanding neutrophil function in response to pollutant exposures is a research gap. Diet may play a role in asthma pathogenesis and morbidity; therefore, diet modification is a potential target opportunity to protect against pollutant-induced lung injury. In particular, in vivo and in vitro data suggest the potential for diet to modify the inflammatory response in the airways, including impacts on neutrophil recruitment and function. Murine models provide compelling results in regard to the potential for dietary components (including fiber, antioxidants, and omega-3 fatty acids) to buffer against the inflammatory response to air pollution in the lung. Precision lifestyle approaches to asthma management and respiratory protection in the context of air pollution exposures may evolve to include diet, pending the results of further epidemiologic and causal investigation and with neutrophil recruitment and activation as a candidate mechanism.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Humanos , Camundongos , Animais , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Pulmão , Dieta/efeitos adversos , Exposição Ambiental/efeitos adversos
9.
Am J Respir Crit Care Med ; 208(10): 1042-1051, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523421

RESUMO

Rationale: Indoor pollutants have been associated with chronic obstructive pulmonary disease morbidity, but it is unclear whether they contribute to disease progression. Objectives: We aimed to determine whether indoor particulate matter (PM) and nitrogen dioxide (NO2) are associated with lung function decline among current and former smokers. Methods: Of the 2,382 subjects with a history of smoking in SPIROMICS AIR, 1,208 participants had complete information to estimate indoor PM and NO2, using individual-based prediction models, in relation to measured spirometry at two or more clinic visits. We used a three-way interaction model between time, pollutant, and smoking status and assessed the indoor pollutant-associated difference in FEV1 decline separately using a generalized linear mixed model. Measurements and Main Results: Participants had an average rate of FEV1 decline of 60.3 ml/yr for those currently smoking compared with 35.2 ml/yr for those who quit. The association of indoor PM with FEV1 decline differed by smoking status. Among former smokers, every 10 µg/m3 increase in estimated indoor PM was associated with an additional 10 ml/yr decline in FEV1 (P = 0.044). Among current smokers, FEV1 decline did not differ by indoor PM. The results of indoor NO2 suggest trends similar to those for PM ⩽2.5 µm in aerodynamic diameter. Conclusions: Former smokers with chronic obstructive pulmonary disease who live in homes with high estimated PM have accelerated lung function loss, and those in homes with low PM have lung function loss similar to normal aging. In-home PM exposure may contribute to variability in lung function decline in people who quit smoking and may be a modifiable exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Ambientais , Doença Pulmonar Obstrutiva Crônica , Humanos , Fumantes , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Nitrogênio/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Material Particulado/efeitos adversos , Pulmão , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos
10.
Ecotoxicol Environ Saf ; 259: 115069, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244199

RESUMO

Exposure to particulate matter (PM) has been associated with increased hospital admissions for influenza. Airway epithelial cells are a primary target for inhaled environmental insults including fine PM (PM2.5) and influenza viruses. The potentiation of PM2.5 exposure on the effects of influenza virus on airway epithelial cells has not been adequately elucidated. In this study, the effects of PM2.5 exposure on influenza virus (H3N2) infection and downstream modulation of inflammation and antiviral immune response were investigated using a human bronchial epithelial cell line, BEAS-2B. The results showed that PM2.5 exposure alone increased the production of pro-inflammatory cytokines including interleukin-6 (IL-6) and IL-8 but decreased the production of the antiviral cytokine interferon-ß (IFN-ß) in BEAS-2B cells while H3N2 exposure alone increased the production of IL-6, IL-8, and IFN-ß. Importantly, prior exposure to PM2.5 enhanced subsequent H3N2 infectivity, expression of viral hemagglutinin protein, as well as upregulation of IL-6 and IL-8, but reduced H3N2-induced IFN-ß production. Pre-treatment with a pharmacological inhibitor of nuclear factor-κB (NF-κB) suppressed pro-inflammatory cytokine production induced by PM2.5, H3N2, as well as PM2.5-primed H3N2 infection. Moreover, antibody-mediated neutralization of Toll-like receptor 4 (TLR4) blocked cytokine production triggered by PM2.5 or PM2.5-primed H3N2 infection, but not H3N2 alone. Taken together, exposure to PM2.5 alters H3N2-induced cytokine production and markers of replication in BEAS-2B cells, which in turn are regulated by NF-κB and TLR4.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Material Particulado/metabolismo , Receptor 4 Toll-Like/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Interleucina-8/metabolismo , Células Epiteliais , Citocinas/metabolismo , Orthomyxoviridae/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia
11.
PLoS One ; 18(5): e0285721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37186612

RESUMO

BACKGROUND: Ozone (O3) exposure causes respiratory effects including lung function decrements, increased lung permeability, and airway inflammation. Additionally, baseline metabolic state can predispose individuals to adverse health effects from O3. For this reason, we conducted an exploratory study to examine the effect of O3 exposure on derivatives of cholesterol biosynthesis: sterols, oxysterols, and secosteroid (25-hydroxyvitamin D) not only in the lung, but also in circulation. METHODS: We obtained plasma and induced sputum samples from non-asthmatic (n = 12) and asthmatic (n = 12) adult volunteers 6 hours following exposure to 0.4ppm O3 for 2 hours. We quantified the concentrations of 24 cholesterol precursors and derivatives by UPLC-MS and 30 cytokines by ELISA. We use computational analyses including machine learning to determine whether baseline plasma sterols are predictive of O3 responsiveness. RESULTS: We observed an overall decrease in the concentration of cholesterol precursors and derivatives (e.g. 27-hydroxycholesterol) and an increase in concentration of autooxidation products (e.g. secosterol-B) in sputum samples. In plasma, we saw a significant increase in the concentration of secosterol-B after O3 exposure. Machine learning algorithms showed that plasma cholesterol was a top predictor of O3 responder status based on decrease in FEV1 (>5%). Further, 25-hydroxyvitamin D was positively associated with lung function in non-asthmatic subjects and with sputum uteroglobin, whereas it was inversely associated with sputum myeloperoxidase and neutrophil counts. CONCLUSION: This study highlights alterations in sterol metabolites in the airway and circulation as potential contributors to systemic health outcomes and predictors of pulmonary and inflammatory responsiveness following O3 exposure.


Assuntos
Ozônio , Adulto , Humanos , Ozônio/efeitos adversos , Projetos Piloto , Esteróis/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Pulmão , Inflamação/induzido quimicamente , Vitaminas/farmacologia , Vitamina D/farmacologia
12.
Sci Rep ; 13(1): 8228, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217548

RESUMO

Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV1) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Progressão da Doença , Fumar/efeitos adversos , Volume Expiratório Forçado , Lavagem Broncoalveolar , Biomarcadores
13.
PLoS One ; 18(3): e0279037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36862675

RESUMO

Respiratory macrophage subpopulations exhibit unique phenotypes depending on their location within the respiratory tract, posing a challenge to in vitro macrophage model systems. Soluble mediator secretion, surface marker expression, gene signatures, and phagocytosis are among the characteristics that are typically independently measured to phenotype these cells. Bioenergetics is emerging as a key central regulator of macrophage function and phenotype but is often not included in the characterization of human monocyte-derived macrophage (hMDM) models. The objective of this study was to expand the phenotype characterization of naïve hMDMs, and their M1 and M2 subsets by measuring cellular bioenergetic outcomes and including an expanded cytokine profile. Known markers of M0, M1 and M2 phenotypes were also measured and integrated into the phenotype characterization. Peripheral blood monocytes from healthy volunteers were differentiated into hMDM and polarized with either IFN-γ + LPS (M1) or IL-4 (M2). As expected, our M0, M1, and M2 hMDMs exhibited cell surface marker, phagocytosis, and gene expression profiles indicative of their different phenotypes. M2 hMDMs however were uniquely characterized and different from M1 hMDMs by being preferentially dependent on oxidativte phosphorylation for their ATP generation and by secreting a distinct cluster of soluble mediators (MCP4, MDC, and TARC). In contrast, M1 hMDMs secreted prototypic pro-inflammatory cytokines (MCP1, eotaxin, eotaxin-3, IL12p70, IL-1α, IL15, TNF-ß, IL-6, TNF-α, IL12p40, IL-13, and IL-2), but demonstrated a relatively constitutively heightened bioenergetic state, and relied on glycolysis for ATP generation. These data are similar to the bioenergetic profiles we previously observed in vivo in sputum (M1) and BAL (M2)-derived macrophages in healthy volunteers, supporting the notion that polarized hMDMs can provide an acceptable in vitro model to study specific human respiratory macrophage subtypes.


Assuntos
Interleucina-12 , Macrófagos , Humanos , Glicólise , Fagocitose , Trifosfato de Adenosina
14.
Chronic Obstr Pulm Dis ; 10(2): 159-169, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36976551

RESUMO

Background: Polymorphisms and products of the cyclooxygenase (COX) pathway have been associated with the development of chronic obstructive pulmonary disease (COPD) and adverse outcomes. COX-produced prostaglandin E2 (PGE-2) may play a role in the inflammation observed in COPD, potentially through deleterious airway macrophage polarization. A better understanding of the role of PGE-2 in COPD morbidity may inform trials for therapeutics targeting the COX pathway or PGE-2. Methods: Urine and induced sputum were collected from former smokers with moderate-severe COPD. The major urinary metabolite of PGE-2 (PGE-M) was measured, and ELISA was performed on sputum supernatant for PGE-2 airway measurement. Airway macrophages underwent flow cytometry phenotyping (surface CD64, CD80, CD163, CD206, and intracellular IL-1ß, TGF-ß1). Health information was obtained the same day as the biologic sample collection. Exacerbations were collected at baseline and then monthly telephone calls. Results: Among 30 former smokers with COPD (mean±SD age 66.4±8.88 years and forced expiratory volume in 1 second [FEV1] 62.4±8.37 percent predicted), a 1 pg/mL increase in sputum PGE-2 was associated with higher odds of experiencing at least one exacerbation in the prior 12 months (odds ratio 3.3; 95% confidence interval: 1.3 to15.0), worse respiratory symptoms and health status. PGE-M was not associated with exacerbations or symptoms. Neither airway PGE-2 nor urinary PGE-M was uniformly associated with an M1 or M2 polarization. Conclusions: Elevated levels of sputum PGE-2, rather than systemic PGE-2, is associated with increased respiratory symptoms and history of exacerbation among individuals with COPD. Additional studies focused on mechanism of action are warranted.

15.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L32-L37, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342131

RESUMO

Nicotine from cigarette smoke is a biologically active molecule that has pleiotropic effects in the airway, which could play a role in smoking-induced lung disease. However, whether nicotine and its metabolites reach sustained, physiologically relevant concentrations on airway surfaces of smokers is not well defined. To address these issues, concentrations of nicotine, cotinine, and hydroxycotinine were measured by mass spectrometry (MS) in supernatants of induced sputum obtained from participants in the subpopulations and intermediate outcome measures in COPD study (SPIROMICS), an ongoing observational study that included never smokers, former smokers, and current smokers with and without chronic obstructive pulmonary disease (COPD). A total of 980 sputum supernatants were analyzed from 77 healthy never smokers, 494 former smokers (233 with COPD), and 396 active smokers (151 with COPD). Sputum nicotine, cotinine, and hydroxycotinine concentrations corresponded to self-reported smoking status and were strongly correlated to urine measures. A cutoff of ∼8-10 ng/mL of sputum cotinine distinguished never smokers from active smokers. Accounting for sample dilution during processing, active smokers had airway nicotine concentrations in the 70-850 ng/mL (∼0.5-5 µM) range, and concentrations remained elevated even in current smokers who had not smoked within 24 h. This study demonstrates that airway nicotine and its metabolites are readily measured in sputum supernatants and can serve as biological markers of smoke exposure. In current smokers, nicotine is present at physiologically relevant concentrations for prolonged periods, supporting a contribution to cigarette-induced airway disease.


Assuntos
Nicotina , Doença Pulmonar Obstrutiva Crônica , Humanos , Nicotina/metabolismo , Cotinina/análise , Cotinina/metabolismo , Fumantes , Sistema Respiratório/metabolismo , Biomarcadores/análise
16.
Chest ; 163(3): 515-528, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36343688

RESUMO

BACKGROUND: The Global Initiative for Chronic Obstructive Lung Disease (GOLD) considers blood eosinophil counts < 100 cells/µL (BEC≤100) in people with COPD to predict poor inhaled corticosteroid (ICS) responsiveness. However, the BEC≤100 phenotype is inadequately characterized, especially in advanced COPD. RESEARCH QUESTION: Are there differences between GOLD group D patients with high BEC and those with low BEC regarding baseline characteristics and longitudinal outcomes? STUDY DESIGN AND METHODS: We used multivariable mixed models and logistic regression to contrast clinical characteristics and outcomes of BEC≤100 vs BEC > 100 (BEC100+) in all subjects with COPD (n = 1,414) and GOLD group D subjects (n = 185) not receiving ICS. RESULTS: We identified n = 485 with BEC≤100 (n = 61 GOLD group D) and n = 929 people with BEC100+ (n = 124 GOLD group D). BEC≤100 status was stable at 6 weeks and approximately 52 weeks (intraclass correlations of 0.78 and 0.71, respectively). Compared with BEC100+, BEC≤100 comprised more women, with greater current smoking, and less frequent childhood asthma. Among all analyzed participants, the two BEC-defined subsets showed similar rates of lung function decline (mean slope, BEC≤100 vs BEC100+, -50 vs -39 mL/y; P = .140), exacerbations (0.40 vs 0.36/y; P = .098), subsequent ICS initiation (2.5% vs 4.4%; P = .071), and mortality (7.8% vs 8.4%; P = .715). However, in GOLD group D, people with BEC≤100 showed higher exacerbation rates within 365 days of enrollment (0.62 vs 0.33/y; P = .002) and total follow-up (1.16 vs 0.83/y; P = .014). They also had greater lung function decline (mean slope of -68 mL/y vs -23 mL/y; P = .036) and had greater emphysema at baseline (voxels < 950 Hounsfield units at total lung capacity of 7.46% vs 4.61%; P = .029). INTERPRETATION: In non-ICS-treated GOLD group D COPD, people with BEC≤100 had more baseline emphysema, prospective exacerbations, and lung function decline. Our analysis has identified a particularly vulnerable subpopulation of people with COPD, suggesting the need for studies focused specifically on their therapeutic treatment. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT01969344; URL: www. CLINICALTRIALS: gov.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Feminino , Humanos , Eosinófilos , Estudos Prospectivos , Corticosteroides/uso terapêutico , Enfisema Pulmonar/tratamento farmacológico , Progressão da Doença , Administração por Inalação
17.
Respir Res ; 23(1): 310, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376879

RESUMO

BACKGROUND: Airway macrophages (AM), crucial for the immune response in chronic obstructive pulmonary disease (COPD), are exposed to environmental particulate matter (PM), which they retain in their cytoplasm as black carbon (BC). However, whether AM BC accurately reflects environmental PM2.5 exposure, and can serve as a biomarker of COPD outcomes, is unknown. METHODS: We analyzed induced sputum from participants at 7 of 12 sites SPIROMICS sites for AM BC content, which we related to exposures and to lung function and respiratory outcomes. Models were adjusted for batch (first vs. second), age, race (white vs. non-white), income (<$35,000, $35,000~$74,999, ≥$75,000, decline to answer), BMI, and use of long-acting beta-agonist/long-acting muscarinic antagonists, with sensitivity analysis performed with inclusion of urinary cotinine and lung function as covariates. RESULTS: Of 324 participants, 143 were current smokers and 201 had spirometric-confirmed COPD. Modeled indoor fine (< 2.5 µm in aerodynamic diameter) particulate matter (PM2.5) and urinary cotinine were associated with higher AM BC. Other assessed indoor and ambient pollutant exposures were not associated with higher AM BC. Higher AM BC was associated with worse lung function and odds of severe exacerbation, as well as worse functional status, respiratory symptoms and quality of life. CONCLUSION: Indoor PM2.5 and cigarette smoke exposure may lead to increased AM BC deposition. Black carbon content in AMs is associated with worse COPD morbidity in current and former smokers, which remained after sensitivity analysis adjusting for cigarette smoke burden. Airway macrophage BC, which may alter macrophage function, could serve as a predictor of experiencing worse respiratory symptoms and impaired lung function.


Assuntos
Poluentes Atmosféricos , Doença Pulmonar Obstrutiva Crônica , Humanos , Qualidade de Vida , Cotinina , Fuligem/efeitos adversos , Fuligem/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/complicações , Macrófagos , Morbidade , Carbono , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise
18.
Inhal Toxicol ; 34(11-12): 329-339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968917

RESUMO

BACKGROUND: We are currently screening human volunteers to determine their sputum polymorphonuclear neutrophil (PMN) response 6- and 24-hours following initiation of exposure to wood smoke particles (WSP). Inflammatory responders (≥10% increase in %PMN) are identified for their subsequent participation in mitigation studies against WSP-induced airways inflammation. In this report we compared responder status (<i>N</i> = 52) at both 6 and 24 hr time points to refine/expand its classification, assessed the impact of the GSTM1 genotype, asthma status and sex on responder status, and explored whether sputum soluble phase markers of inflammation correlate with PMN responsiveness to WSP. RESULTS: Six-hour responders tended to be 24-hour responders and vice versa, but 24-hour responders also had significantly increased IL-1beta, IL-6, IL-8 at 24 hours post WSP exposure. The GSTM1 null genotype significantly (<i>p</i> &lt; 0.05) enhanced the %PMN response by 24% in the 24-hour responders and not at all in the 6 hours responders. Asthma status enhanced the 24 hour %PMN response in the 6- and 24-hour responders. In the entire cohort (not stratified by responder status), we found a significant, but very small decrease in FVC and systolic blood pressure immediately following WSP exposure and sputum %PMNs were significantly increased and associated with sputum inflammatory markers (IL-1beta, IL-6, IL-8, and PMN/mg) at 24 but not 6 hours post exposure. Blood endpoints in the entire cohort showed a significant increase in %PMN and PMN/mg at 6 but not 24 hours. Sex had no effect on %PMN response. CONCLUSIONS: The 24-hour time point was more informative than the 6-hour time point in optimally and expansively defining airway inflammatory responsiveness to WSP exposure. GSTM1 and asthma status are significant effect modifiers of this response. These study design and subject parameters should be considered before enrolling volunteers for proof-of-concept WSP mitigation studies.


Assuntos
Asma , Glutationa Transferase , Fumaça , Humanos , Asma/genética , Biomarcadores , Genótipo , Inflamação , Interleucina-6 , Interleucina-8 , Neutrófilos , Fumaça/efeitos adversos , Madeira , Glutationa Transferase/genética
19.
Environ Int ; 167: 107407, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850080

RESUMO

BACKGROUND: Over one-third of the U.S. population is exposed to unsafe levels of ozone (O3). Dietary supplementation with fish oil (FO) or olive oil (OO) has shown protection against other air pollutants. This study evaluates potential cardiopulmonary benefits of FO or OO supplementation against acute O3 exposure in young healthy adults. METHODS: Forty-three participants (26 ± 4 years old; 47% female) were randomized to receive 3 g/day of FO, 3 g/day OO, or no supplementation (CTL) for 4 weeks prior to undergoing 2-hour exposures to filtered air and 300 ppb O3 with intermittent exercise on two consecutive days. Outcome measurements included spirometry, sputum neutrophil percentage, blood markers of inflammation, tissue injury and coagulation, vascular function, and heart rate variability. The effects of dietary supplementation and O3 on these outcomes were evaluated with linear mixed-effect models. RESULTS: Compared with filtered air, O3 exposure decreased FVC, FEV1, and FEV1/FVC immediately post exposure regardless of supplementation status. Relative to that in the CTL group, the lung function response to O3 exposure in the FO group was blunted, as evidenced by O3-induced decreases in FEV1 (Normalized CTL -0.40 ± 0.34 L, Normalized FO -0.21 ± 0.27 L) and FEV1/FVC (Normalized CTL -4.67 ± 5.0 %, Normalized FO -1.4 ± 3.18 %) values that were on average 48% and 70% smaller, respectively. Inflammatory responses measured in the sputum immediately post O3 exposure were not different among the three supplementation groups. Systolic blood pressure elevations 20-h post O3 exposure were blunted by OO supplementation. CONCLUSION: FO supplementation appears to offer protective effects against lung function decrements caused by acute O3 exposure in healthy adults.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/farmacologia , Feminino , Óleos de Peixe/farmacologia , Humanos , Pulmão , Masculino , Ozônio/efeitos adversos , Testes de Função Respiratória
20.
Am J Respir Crit Care Med ; 206(10): 1248-1258, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35731626

RESUMO

Rationale: Numerous studies have demonstrated that e-cigarettes can impact respiratory immune homeostasis; however, the extent of these effects remains an active area of investigation, and most previous studies were conducted with model systems or subjects exposed to third-generation e-cigarettes, such as vape pens and box mods. Objectives: Given the rise in popularity of nicotine-salt-containing pods and disposable e-cigarettes (fourth generation), we set out to better understand the respiratory effects of these newer e-cigarettes and compare their effects to early-generation devices. Methods: We collected induced sputum samples from a cohort of nonsmokers, smokers, third-generation e-cigarette users, and fourth-generation e-cigarette users (n = 20-30 per group) and evaluated the cellular and fluid-phase composition for markers of inflammation, host defense, and lung injury. Measurements and Main Results: Fourth-generation e-cigarette users had significantly more bronchial epithelial cells in the sputum, suggestive of airway injury. Concentrations of soluble intercellular adhesion molecule 1 (sICAM1) and soluble vascular cell adhesion molecule 1 (sVCAM1) were significantly lower in fourth-generation e-cigarette users in comparison with all other groups, and CRP (C-reactive protein), IFN-γ, MCP-1 (monocyte chemoattractant protein-1), MMP-2 (matrix metalloproteinase 2), uteroglobin, and VEGF (vascular endothelial growth factor) were significantly lower in fourth- versus third-generation e-cigarette users, suggestive of overall immune suppression in fourth-generation e-cigarette users. Predictive modeling also demonstrated clear separation between exposure groups, indicating that the overall mediator milieu is different between groups, particularly fourth-generation e-cigarette users. Conclusions: Our results indicate disrupted immune homeostasis in fourth-generation e-cigarette users and demonstrate that the biological effects of fourth-generation e-cigarette use are unique compared with those associated with previous-generation e-cigarettes.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Humanos , Vaping/efeitos adversos , Metaloproteinase 2 da Matriz , Fator A de Crescimento do Endotélio Vascular , Biomarcadores , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...