Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Orthod ; 42(1): 72-77, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31009950

RESUMO

BACKGROUND: Although ceramic brackets have been extensively used for decades in orthodontics there is not till today any study focusing on the possible deterioration of mechanical properties after in vivo ageing. OBJECTIVES: To determine whether the mechanical properties of alumina orthodontic brackets change after intraoral ageing thereby assessing the validity of a theoretical model established for the performance of ceramics in wet environments. MATERIALS AND METHODS: Two alumina brackets, one single crystal (Radiance, American Orthodontics, Sheboygan, WI) and one polycrystalline (Clarity, 3M, St. Paul, MN) were included in this study. Ten brackets for each group were collected from different patients after a minimum of 3-month intraoral exposure, whereas as-received brackets of the same manufacturers were used as controls. The specimens were subjected to Raman spectroscopy and were then embedded in epoxy resin and metallographic ground and polished. The mechanical properties of four groups (radiance control: RAC, radiance-retrieved RAR, clarity control: CLC and clarity-retrieved CLR) were determined using instrumented indentation testing according to ISO 14577-2002. The mechanical properties tested were Martens hardness (HM), indentation modulus (EIT), the ratio of elastic to total work, commonly known as elastic index (ηIT), and fracture toughness (KIC). The numerical results were statistically analysed employing two-way analysis of variance (ANOVA) and Tukey multiple comparison test at a = 0.05. RESULTS: Raman analysis revealed that both brackets are made of a-Al2O3 (corundum). No statistically significant differences were found for HM (N/mm2): RAC = 7249 (1507), RAR = 6926 (1144), CLC = 8052 (1360), CLR = 7390 (2393), or for EIT (GPa): RAC = 141 (27), RAR = 139 (23), CLC = 139 (28), CLR = 131 (47). However, significant differences were identified between the two alumina brackets tested for ηIT (%): RAC = 55.7 (4.2), RAR = 54.0 (3.5), CLC = 62.5 (4.4), CLR = 61.8 (4.7), while KIC was measured only for the polycrystalline bracket (Clarity) because of the complicated fractured pattern of the single-crystal bracket. Both brackets share equal HM and EIT before and after orthodontic intraoral ageing. LIMITATIONS: Whereas the study assessed the changes after intraoral exposure per theoretical model, which describes the reduction of critical stress to induce fracture after wetting, long-term intraoral ageing could have induced more pronounced effects. CONCLUSIONS/IMPLICATIONS: The results of this study indicate that 3 months of intraoral ageing do not change the mechanical properties of single-crystal and polycrystalline orthodontic brackets tested, thus indicating that the Griffith theory may not be applied to the case of manufactured ceramic brackets owing possibly to internal defects.


Assuntos
Cerâmica , Braquetes Ortodônticos , Dureza , Humanos , Teste de Materiais , Estresse Mecânico , Propriedades de Superfície , Fatores de Tempo
2.
J Clin Periodontol ; 34(7): 599-609, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17433045

RESUMO

AIM: Evaluate enamel matrix proteins derivative effect on gene expression profiles in cultured human periodontal ligament cell population and its clones. MATERIAL AND METHODS: Human periodontal ligament (PDL) cells were explanted. Cell cloning was performed and clones classified into fibroblastic (FB) and mineralized tissue forming (MTF) according to their capacity to express alkaline phosphatase and form mineralized tissue. All cell cultures were grown for 7 days, with and without enamel proteins added to the medium. Following RNA extraction, expression profiling was performed by hybridization with a DNA micro-array. Selected genes differed from the control at a significant level smaller than p<0.01. RESULTS: Enamel proteins induced major qualitative changes in mRNA expression in all PDL cell populations, differently affecting the entire PDL cell population and its clones. In the entire PDL cell population, enamel proteins significantly enhanced PDL cell function, with a general effect on enhanced cell functional metabolism. CONCLUSIONS: Enamel proteins enhanced gene expression responsible for protein and mineralized tissue synthesis in the entire PDL population. In the MTF clones, nucleic acid metabolism, protein metabolism and signal transduction related genes were up-regulated, while in the FB clones, up-regulated genes were related to cell adhesion, nucleic acid metabolism and signal transduction.


Assuntos
Proteínas do Esmalte Dentário/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Fosfatase Alcalina/análise , Fosfatase Alcalina/genética , Calcificação Fisiológica/genética , Adesão Celular/genética , Células Cultivadas , Células Clonais , DNA/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hibridização de Ácido Nucleico , Ligamento Periodontal/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA