Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(48): 53932-53941, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33203211

RESUMO

Recent advancements in gallium oxide (Ga2O3)-based heterostructures have allowed optoelectronic devices to be used extensively in the fields of power electronics and deep-ultraviolet photodetection. While most previous research has involved realizing single-crystalline Ga2O3 layers on native substrates for high conductivity and visible-light transparency, presented and investigated herein is a single-crystalline ß-Ga2O3 layer grown on an α-Al2O3 substrate through an interfacial γ-In2O3 layer. The single-crystalline transparent conductive oxide layer made of wafer-scalable γ-In2O3 provides high carrier transport, visible-light transparency, and antioxidation properties that are critical for realizing vertically oriented heterostructures for transparent oxide photonic platforms. Physical characterization based on X-ray diffraction and high-resolution transmission electron microscopy imaging confirms the single-crystalline nature of the grown films and the crystallographic orientation relationships among the monoclinic ß-Ga2O3, cubic γ-In2O3, and trigonal α-Al2O3, while the elemental composition and sharp interfaces across the heterostructure are confirmed by Rutherford backscattering spectrometry. Furthermore, the energy-band offsets are determined by X-ray photoelectron spectroscopy at the ß-Ga2O3/γ-In2O3 interface, elucidating a type-II heterojunction with conduction- and valence-band offsets of 0.16 and 1.38 eV, respectively. Based on the single-crystalline ß-Ga2O3/γ-In2O3/α-Al2O3 all-oxide heterostructure, a vertically oriented DUV photodetector is fabricated that exhibits a high photoresponsivity of 94.3 A/W, an external quantum efficiency of 4.6 × 104%, and a specific detectivity of 3.09 × 1012 Jones at 250 nm. The present demonstration lays a strong foundation for and paves the way to future all-oxide-based transparent photonic platforms.

2.
ACS Appl Mater Interfaces ; 11(38): 35095-35104, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31462042

RESUMO

In recent years, ß-Ga2O3/NiO heterojunction diodes have been studied, but reports in the literature lack an investigation of an epitaxial growth process of high-quality single-crystalline ß-Ga2O3/NiO thin films via electron microscopy analysis and the fabrication and characterization of an optoelectronic device based on the resulting heterojunction stack. This work investigates the thin-film growth of a heterostructure stack comprising n-type ß-Ga2O3 and p-type cubic NiO layers grown consecutively on c-plane sapphire using pulsed laser deposition, as well as the fabrication of solar-blind ultraviolet-C photodetectors based on the resulting p-n junction heterodiodes. Several characterization techniques were employed to investigate the heterostructure, including X-ray crystallography, ion beam analysis, and high-resolution electron microscopy imaging. X-ray diffraction analysis confirmed the single-crystalline nature of the grown monoclinic and cubic (2̅01) ß-Ga2O3 and (111) NiO films, respectively, whereas electron microscopy analysis confirmed the sharp layer transitions and high interface qualities in the NiO/ß-Ga2O3/sapphire double-heterostructure stack. The photodetectors exhibited a peak spectral responsivity of 415 mA/W at 7 V reverse-bias voltage for a 260 nm incident-light wavelength and 46.5 pW/µm2 illuminating power density. Furthermore, we also determined the band offset parameters at the thermodynamically stable heterointerface between NiO and ß-Ga2O3 using high-resolution X-ray photoelectron spectroscopy. The valence and conduction band offsets values were found to be 1.15 ± 0.10 and 0.19 ± 0.10 eV, respectively, with a type-I energy band alignment.

3.
Opt Express ; 26(6): 6614-6628, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609349

RESUMO

Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (ß) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and ß, while the second model provides a relation between ß, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

4.
ACS Nano ; 9(5): 5255-63, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25933370

RESUMO

The ability to incorporate rigid but high-performance nanoscale nonplanar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nanoscale, nonplanar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stacks, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 µm gate length, exhibits an ION value of nearly 70 µA/µm (VDS = 2 V, VGS = 2 V) and a low subthreshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device's performance with insignificant deterioration even at a high bending state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...