Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446151

RESUMO

The estrogen metabolite 2-methoxyestradiol (2ME) is a promissory anticancer drug mainly because of its pro-apoptotic properties in cancer cells. However, the therapeutic use of 2ME has been hampered due to its low solubility and bioavailability. Thus, it is necessary to find new ways of administration for 2ME. Zeolites are inorganic aluminosilicates with a porous structure and are considered good adsorbents and sieves in the pharmaceutical field. Here, mordenite-type zeolite nanoparticles were loaded with 2ME to assess its efficiency as a delivery system for prostate cancer treatment. The 2ME-loaded zeolite nanoparticles showed an irregular morphology with a mean hydrodynamic diameter of 250.9 ± 11.4 nm, polydispersity index of 0.36 ± 0.04, and a net negative surface charge of -34 ± 1.73 meV. Spectroscopy with UV-vis and Attenuated Total Reflectance Infrared Fourier-Transform was used to elucidate the interaction between the 2ME molecules and the zeolite framework showing the formation of a 2ME-zeolite conjugate in the nanocomposite. The studies of adsorption and liberation determined that zeolite nanoparticles incorporated 40% of 2ME while the liberation of 2ME reached 90% at pH 7.4 after 7 days. The 2ME-loaded zeolite nanoparticles also decreased the viability and increased the mRNA of the 2ME-target gene F-spondin, encoded by SPON1, in the human prostate cancer cell line LNCaP. Finally, the 2ME-loaded nanoparticles also decreased the viability of primary cultures from mouse prostate cancer. These results show the development of 2ME-loaded zeolite nanoparticles with physicochemical and biological properties compatible with anticancer activity on the human prostate and highlight that zeolite nanoparticles can be a good carrier system for 2ME.


Assuntos
Nanopartículas , Neoplasias da Próstata , Zeolitas , Masculino , Humanos , Animais , Camundongos , Zeolitas/química , Próstata , Neoplasias da Próstata/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química
2.
J Biomed Mater Res A ; 108(10): 2032-2043, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32333463

RESUMO

Bioglass nanoparticles (n-BGs, 54SiO2 :40CaO:6P2 O5 mol %) with about 27 nm diameter were synthesized by the sol-gel method and incorporated into a poly(lactic acid) (PLA) matrix by the melting process in order to obtain nanocomposites with filler contents of 5, 10, and 25 wt %. Our results showed that during the cooling scan, the crystallization temperature (Tc ) of the PLA/n-BG nanocomposites decreased 13°C as compared to neat PLA. The presence of nanoparticles also decreased the thermal stability of the PLA matrix, as nanocomposites presented up to about 20°C lower degradation temperatures in a nitrogen atmosphere. The presence of n-BG increased the stiffness of the polymer matrix, and for instance the composite with 25 wt % of filler presented about 52.6% higher Young's modulus than neat PLA. n-BG incorporation into PLA increased also the hydrolytic degradation of the polymer over time. When the PLA composites were immersed in simulated body fluid, an apatite layer was formed on their surface, as verified by Fourier transform infrared, X-Ray Diffraction (XRD), and scanning electron microscopy-EDS, showing that the presence of n-BG induced bioactivity on the PLA matrix. Moreover, the viability of cervical uterine adenocarcinoma cells was higher on PLA/n-BG nanocomposite with 25 wt % of filler. The presence of n-BG barely gave an antibacterial effect on the polymer matrix, despite the well-known biocidal properties of these nanoparticles. Our results show that the presence of n-BGs is a proper route for improving the bioactivity of PLA with potential application in tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Cerâmica/química , Nanopartículas/química , Poliésteres/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cerâmica/farmacologia , Cristalização , Módulo de Elasticidade , Células HeLa , Humanos , Nanocompostos/química , Poliésteres/farmacologia
3.
PLoS One ; 14(8): e0214900, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31415561

RESUMO

Novel Magnesium Oxide (MgO) nanoparticles (NPs) modified with the polymer polyethylene glycol (PEG) were synthesized as carrier for the anticancer drug 2-Methoxyestradiol (2ME) to improve its clinical application. The functionalized NPs were characterized by Infrared spectroscopy with Fourier transform to elucidate the vibration modes of this conjugate, indicating the formation of the MgO-PEG-2ME nanocomposite. The studies of absorption and liberation determined that MgO-PEG-2ME NPs incorporated 98.51 % of 2ME while liberation of 2ME was constant during 7 days at pH 2, 5 and 7.35. Finally, the MgO-PEG-2ME NPs decreased the viability of the prostate cancer cell line LNCap suggesting that this nanocomposite is suitable as a drug delivery system for anticancer prostate therapy.


Assuntos
2-Metoxiestradiol/química , Antineoplásicos/química , Portadores de Fármacos/química , Óxido de Magnésio/química , Nanopartículas/química , Polietilenoglicóis/química , 2-Metoxiestradiol/farmacologia , Absorção Fisico-Química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Cinética , Óxido de Magnésio/toxicidade , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...