Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39001286

RESUMO

Blood serum of patients with gastric (n = 68) and esophageal (n = 43) cancer was assessed for proteolytic fragments of IgG. Serum samples of 20 healthy donors were used as a control. We analyzed indicators of hemostasis (prothrombin time, fibrinogen, plasminogen activity, a2-antiplasmin activity, protein C activity) in blood plasma and the level of total IgG in the blood serum. The median IgG-LysK of healthy donors was lower than in esophageal cancer and in patients with gastric cancer. ROC-analysis showed high sensitivity (91%) and specificity (85%) in the group with esophageal cancer but 68% and 85%, respectively, in patients with gastric cancer. Analysis of false negatives IgG-LysK in cancer patients showed that most patients had an advanced stage of cancer accompanied by metastases. Total IgG in the plasma of patients with false-negative IgG-LysK values was 30% lower than in samples with positive values, while the level of a2-antiplasmin was increased and the prothrombin time was shorter. These changes in blood homeostasis may be the reason for an increase in the proportion of false-negative values of the IgG-LysK coefficient. Circulatory IgG-LysK levels increase in the early stages of such cancers as gastric and esophageal cancers. Thus, when used in a panel with other more specific markers for these pathologies, this indicator can significantly increase the early detection of cancer.

2.
Micromachines (Basel) ; 14(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36677130

RESUMO

Ovarian cancer is a gynecological cancer characterized by a high mortality rate and tumor heterogeneity. Its early detection and primary prophylaxis are difficult to perform. Detecting biomarkers for ovarian cancer plays a pivotal role in therapy effectiveness and affects patients' survival. This study demonstrates the detection of microRNAs (miRNAs), which were reported to be associated with ovarian cancer tumorigenesis, with a nanowire biosensor based on silicon-on-insulator structures (SOI-NW biosensor). The advantages of the method proposed for miRNA detection using the SOI-NW biosensor are as follows: (1) no need for additional labeling or amplification reaction during sample preparation, and (2) real-time detection of target biomolecules. The detecting component of the biosensor is a chip with an array of 3 µm wide, 10 µm long silicon nanowires on its surface. The SOI-NW chip was fabricated using the "top-down" method, which is compatible with large-scale CMOS technology. Oligonucleotide probes (oDNA probes) carrying sequences complementary to the target miRNAs were covalently immobilized on the nanowire surface to ensure high-sensitivity biospecific sensing of the target biomolecules. The study involved two experimental series. Detection of model DNA oligonucleotides being synthetic analogs of the target miRNAs was carried out to assess the method's sensitivity. The lowest concentration of the target oligonucleotides detectable in buffer solution was 1.1 × 10-16 M. In the second experimental series, detection of miRNAs (miRNA-21, miRNA-141, and miRNA-200a) isolated from blood plasma samples collected from patients having a verified diagnosis of ovarian cancer was performed. The results of our present study represent a step towards the development of novel highly sensitive diagnostic systems for the early revelation of ovarian cancer in women.

3.
Micromachines (Basel) ; 12(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34945431

RESUMO

A nanoribbon biosensor (NRBS) was developed to register synthetic DNAs that simulate and are analogous to miRNA-17-3p associated with colorectal cancer. Using this nanoribbon biosensor, the ability to detect miRNA-17-3p in the blood plasma of a patient diagnosed with colorectal cancer has been demonstrated. The sensing element of the NRBS was a nanochip based on a silicon-on-insulator (SOI) nanostructure. The nanochip included an array of 10 nanoribbons and was designed with the implementation of top-down technology. For biospecific recognition of miRNA-17-3p, the nanochip was modified with DNA probes specific for miRNA-17-3p. The performance of the nanochip was preliminarily tested on model DNA oligonucleotides, which are synthetic analogues of miRNA-17-3p, and a detection limit of ~10-17 M was achieved. The results of this work can be used in the development of serological diagnostic systems for early detection of colorectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...