Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36679338

RESUMO

Biocatalysts based on the methylotrophic yeast Ogataea polymorpha VKM Y-2559 immobilized in polymer-based nanocomposites for the treatment of methanol-containing wastewater were developed. The organosilica composites with different matrix-to-filler ratios derived from TEOS/MTES in the presence of PEG (SPEG-composite) and from silicon-polyethylene glycol (STPEG-composite) differ in the structure of the silicate phase and its distribution in the composite matrix. Methods of fluorescent and scanning microscopy first confirmed the formation of an organosilica shell around living yeast cells during sol-gel bio-STPEG-composite synthesis. Biosensors based on the yeast cells immobilized in STPEG- and SPEG-composites are characterized by effective operation: the coefficient of sensitivity is 0.85 ± 0.07 mgO2 × min-1 × mmol-1 and 0.87 ± 0.05 mgO2 × min-1 × mmol-1, and the long-term stability is 10 and 15 days, respectively. The encapsulated microbial cells are protected from UV radiation and the toxic action of heavy metal ions. Biofilters based on the developed biocatalysts are characterized by high effectiveness in the utilization of methanol-rich wastewater-their oxidative power reached 900 gO2/(m3 × cycle), and their purification degree was up to 60%.

2.
Enzyme Microb Technol ; 150: 109879, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489032

RESUMO

The impact of hydrophilic polymers in an organosilica matrix on the features and performance of immobilized methylotrophic yeast cells used as biocatalysts was investigated and described. Yeast cells were immobilized in a matrix made of tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) by one-step sol-gel route of synthesis in the presence of polyethylene glycol (PEG) or polyvinyl alcohol (PVA). Organosilica shells were spontaneously built around cells as a result of yeast immobilization at a TEOS to MTES ratio of 85/15 vol% and hydrophilic polymer (PEG or PVA). As a structure-directing agent, PVA produces organosilica films. Stable high-performance biocatalysts active for one year, if stored at -18 °C, have been obtained by entrapment of methylotrophic yeast cells. A trickling biofilter with and without active aeration was designed using entrapped yeast cells to treat methanol polluted wastewater. A biofilter model with active aeration could halve methanol input thus demonstrating better performance compared to treatment without active aeration.


Assuntos
Polímeros , Saccharomyces cerevisiae , Biocatálise , Interações Hidrofóbicas e Hidrofílicas , Álcool de Polivinil
3.
3 Biotech ; 11(5): 222, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33968567

RESUMO

This work proposes a method of forming a microorganism-mediator(s) receptor system, in which the rates of separate stages of mediator bioelectrocatalysis are used as the basis for the development of biosensors for the biochemical oxygen demand (BOD) rapid assay. In the presence of a ferrocene mediator, the yeast Blastobotrys adeninivorans was shown to enable oxidation of a larger range of substrates as compared with other investigated microorganisms-bacteria Escherichia coli and yeast Ogataea polymorpha. The rate constants of the interaction of the yeast B. adeninivorans with nine compounds, electron transfer mediators, were determined; the best mediator for these microorganisms was found to be neutral red (k int = 0.681 ± 0.009 dm3/g s). Neutral red possesses a high rate of interaction with the ferrocene mediator (14,200 ± 100 dm3/mol s) shown earlier to be the most promising acceptor of electrons at a carbon paste electrode (0.4 ± 0.1 cm/s). These features enabled the formation of a two-mediator ferrocene-neutral red system to be used in a biosensor. A two-mediator-based biosensor had a higher sensitivity (the lower limit of detected BOD concentrations, 0.16 mg/dm3) than that of a one-mediator system based on neutral red and ferrocene. Analysis of ten samples from surface water reservoirs showed the combination of ferrocene, neutral red and the yeast B. adeninivorans to enable the data that highly correlated (R = 0.9693) with those of the standard method.

4.
ACS Omega ; 2(11): 8099-8107, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023573

RESUMO

Self-organized bacteria have been the subject of interest for a number of applications, including the construction of microbial fuel cells. In this paper, we describe the formation of a self-organized, three-dimensional network that is constructed using Gluconobacter oxydans B-1280 cells in a hydrogel consisting of poly(vinyl alcohol) (PVA) with N-vinyl pyrrolidone (VP) as a cross-linker, in which the bacterial cells are organized in a particular side-by-side alignment. We demonstrated that nonmotile G. oxydans cells are able to reorganize themselves, transforming and utilizing PVA-VP polymeric networks through the molecular interactions of bacterial extracellular polysaccharide (EPS) components such as acetan, cellulose, dextran, and levan. Molecular dynamics simulations of the G. oxydans EPS components interacting with the hydrogel polymeric network showed that the solvent-exposed loops of PVA-VP extended and engaged in bacterial self-encapsulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...