Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 89(5): e202300579, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38116999

RESUMO

The H2O@HKUST-1 and DMF@HKUST-1 systems were experimental and computationally assessed, employing XRD/TGA/FT-IR/DFT-calculations, evidencing that H2O or DMF coordinated to Cu, modulating HKUST-1 photocatalytic properties. DMF@HKUST-1 has narrower bandgap promoting higher-crystallinity and light-harvesting. H2O@HKUST-1 showed smaller particle sizing and sharp morphology. Theoretical models, (H2O)1@HKUST-1 and (DMF)1@HKUST-1, containing one coordinated molecule, elucidated bandgap modulation associated with infiltration. H2O@HKUST-1/DMF@HKUST-1 presented bandgaps [eV] of 3.6/3.4, by Tauc plots, and 3.55/3.26, by theoretical calculations, narrowing bandgap, compared with non-solvated HKUST-1(HKUST-1NS). Both composites raised the valence band (VB) and lowered the conduction band (CB), but DMF@HKUST-1 most raised VB. Topological analysis revealed that guests i) with higher electronic density, raised VB, and ii) induced π-backbonding, lowering CB. DMF@HKUST-1 presented a higher photocatalytic hydrogen evolution (µmol), 26.45, in the first 30 min of the reaction, nevertheless, H2O@HKUST-1 presented a competitive activity, of 17.32. In large periods, H2O@HKUST-1/DMF@HKUST-1 showed practically the same hydrogen evolution, 45.50/49.03.

2.
Heliyon ; 9(10): e20605, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37842589

RESUMO

The photoelectrocatalytic reduction of CO2 (CO2RR) onto bismuth oxyhalides (BiOX, X = Cl, Br, I) was studied through physicochemical and photoelectrochemical measurements. The successful synthesis of the BiOX compounds was carried out through a solvothermal methodology and confirmed by XRD measurements. The morphology was analyzed by SEM; meanwhile, area and pore size were determined through BET area measurements. BiOI and BiOCl present a lower particle size (3.15 and 2.71 µm, respectively); however, the sponge-like morphology presented by BiOI results in an increase in the BET area, which can enhance the catalytic activity of this semiconductor. In addition, DRS measurements allowed us to determine bandgap values of 1.9, 2.4, and 3.6 eV for BiOI, BiOBr, and BiOCl, respectively. Such results predict better visible light harvesting for BiOI. Photoelectrochemical measurements indicated that BiOX shows p-type semiconductor behavior, being the holes the majority charge carriers, making BiOI the most active material to carry out photoelectrocatalytic CO2RR. In the second stage, three different composites, BiOI-Pd, BiOI-Cu, and BiOI-PdCu, (BiOI-M; M = Pd, Cu, PdCu), were fabricated to study the influence of active metal nanoparticles (NP's) in the BiOI CO2RR activity. XRD measurements confirmed the interaction between BiOI and the metallic NP's, the three composites overpassed by 20% the BET area of pristine BiOI. Photoelectrochemical measurements indicate that all BiOI-metal composites are suitable materials to perform CO2 reduction in neutral media efficiently; however, the BiOI-PdCu composites surpassed the faradaic current of BiOI-Pd and BiOI-Cu at 0.85 V vs. RHE (3.15, 2.06 and 2.15 mA cm-2, respectively). BiOI-PdCu presented photoactivity to carry out the CO2 reduction evolving formic acid and acetic acid as the main products under visible-light irradiation.

3.
ChemMedChem ; 17(20): e202200367, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36068174

RESUMO

Although it is known that the first case of cancer was recorded in ancient Egypt around 1600 BC, it was not until 1917 during the First World War and the development of mustard gas that chemotherapy against cancer became relevant; however, its properties were not recognised until 1946 to later be used in patients. In this sense, the use of metallopharmaceuticals in cancer therapy was extensively explored until the 1960s with the discovery of cisplatin and its anticancer activity. From that date to the present, the search for more effective, more selective metallodrugs with fewer side effects has been an area of continuous exploration. Efforts have led to considering a wide variety of metals from the periodic table, mainly from the d-block, as well as a wide variety of organic ligands, preferably with proven biological activity. In this sense, various research groups have found an ideal binder in Schiff bases, since their raw materials are easily accessible, their synthesis conditions are friendly and their denticity can be manipulated. Therefore, in this review, we have explored the anticancer and antitumor activity reported in the literature for coordination complexes of d-block metals coordinated with tridentate Schiff bases (O N O and O N N) derived from salicylaldehyde. For this work, we have used the main scientific databases CCDC® and SciFinder®.


Assuntos
Complexos de Coordenação , Gás de Mostarda , Elementos de Transição , Humanos , Bases de Schiff/farmacologia , Complexos de Coordenação/farmacologia , Cisplatino/farmacologia , Metais , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA