Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 576(7787): 416-422, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31853084

RESUMO

Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator-a stoichiometric well ordered magnetic compound-could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6-8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

2.
Sci Rep ; 7(1): 6720, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751668

RESUMO

Modern theories of quantum magnetism predict exotic multipolar states in weakly interacting strongly frustrated spin-1/2 Heisenberg chains with ferromagnetic nearest neighbor (NN) inchain exchange in high magnetic fields. Experimentally these states remained elusive so far. Here we report strong indications of a magnetic field-induced nematic liquid arising above a field of ~13 T in the edge-sharing chain cuprate LiSbCuO4 ≡ LiCuSbO4. This interpretation is based on the observation of a field induced spin-gap in the measurements of the 7Li NMR spin relaxation rate T 1-1 as well as a contrasting field-dependent power-law behavior of T 1-1 vs. T and is further supported by static magnetization and ESR data. An underlying theoretical microscopic approach favoring a nematic scenario is based essentially on the NN XYZ exchange anisotropy within a model for frustrated spin-1/2 chains and is investigated by the DMRG technique. The employed exchange parameters are justified qualitatively by electronic structure calculations for LiCuSbO4.

3.
Phys Rev Lett ; 101(24): 247603, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19113665

RESUMO

Inelastic neutron scattering (INS), electron spin resonance (ESR), and nuclear magnetic resonance (NMR) measurements were employed to establish the origin of the strong magnetic signal in lightly-hole-doped La1-xSrxCoO3, x approximately 0.002. Both INS and ESR low temperature spectra show intense excitations with large effective g factors approximately 10-18. NMR data indicate the creation of extended magnetic clusters. From the Q dependence of the INS magnetic intensity, we conclude that the observed anomalies are caused by the formation of octahedrally shaped spin-state polarons comprising seven Co ions. The present INS, ESR, and NMR data give evidence for two regimes in the lightly-hole-doped samples: (i) T<35 K dominated by spin polarons; (ii) T>35 K dominated by thermally activated magnetic Co3+ ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...