Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(1): nwad237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38116094

RESUMO

Theory regarding the causation of mass extinctions is in need of systematization, which is the focus of this contribution. Every mass extinction has both an ultimate cause, i.e. the trigger that leads to various climato-environmental changes, and one or more proximate cause(s), i.e. the specific climato-environmental changes that result in elevated biotic mortality. With regard to ultimate causes, strong cases can be made that bolide (i.e. meteor) impacts, large igneous province (LIP) eruptions and bioevolutionary events have each triggered one or more of the Phanerozoic Big Five mass extinctions, and that tectono-oceanic changes have triggered some second-order extinction events. Apart from bolide impacts, other astronomical triggers (e.g. solar flares, gamma bursts and supernova explosions) remain entirely in the realm of speculation. With regard to proximate mechanisms, most extinctions are related to either carbon-release or carbon-burial processes, the former being associated with climatic warming, ocean acidification, reduced marine productivity and lower carbonate δ13C values, and the latter with climatic cooling, increased marine productivity and higher carbonate δ13C values. Environmental parameters such as marine redox conditions and terrestrial weathering intensity do not show consistent relationships with carbon-cycle changes. In this context, mass extinction causation can be usefully classified using a matrix of ultimate and proximate factors. Among the Big Five mass extinctions, the end-Cretaceous biocrisis is an example of a bolide-triggered carbon-release event, the end-Permian and end-Triassic biocrises are examples of LIP-triggered carbon-release events, and the Late Ordovician and Late Devonian biocrises are examples of bioevolution-triggered carbon-burial events. Whereas the bolide-impact and LIP-eruption mechanisms appear to invariably cause carbon release, bioevolutionary triggers can result in variable carbon-cycle changes, e.g. carbon burial during the Late Ordovician and Late Devonian events, carbon release associated with modern anthropogenic climate warming, and little to no carbon-cycle impact due to certain types of ecosystem change (e.g. the advent of the first predators around the end-Ediacaran; the appearance of Paleolithic human hunters in Australasia and the Americas). Broadly speaking, studies of mass extinction causation have suffered from insufficiently critical thinking-an impartial survey of the extant evidence shows that (i) hypotheses of a common ultimate cause (e.g. bolide impacts or LIP eruptions) for all Big Five mass extinctions are suspect given manifest differences in patterns of environmental and biotic change among them; (ii) the Late Ordovician and Late Devonian events were associated with carbon burial and long-term climatic cooling, i.e. changes that are inconsistent with a bolide-impact or LIP-eruption mechanism; and (iii) claims of periodicity in Phanerozoic mass extinctions depended critically on the now-disproven idea that they shared a common extrinsic trigger (i.e. bolide impacts).

2.
Nat Commun ; 14(1): 1564, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015913

RESUMO

During the Marinoan Ice Age (ca. 654-635 Ma), one of the 'Snowball Earth' events in the Cryogenian Period, continental icesheets reached the tropical oceans. Oceanic refugia must have existed for aerobic marine eukaryotes to survive this event, as evidenced by benthic phototrophic macroalgae of the Songluo Biota preserved in black shales interbedded with glacial diamictites of the late Cryogenian Nantuo Formation in South China. However, the environmental conditions that allowed these organisms to thrive are poorly known. Here, we report carbon-nitrogen-iron geochemical data from the fossiliferous black shales and adjacent diamictites of the Nantuo Formation. Iron-speciation data document dysoxic-anoxic conditions in bottom waters, whereas nitrogen isotopes record aerobic nitrogen cycling perhaps in surface waters. These findings indicate that habitable open-ocean conditions were more extensive than previously thought, extending into mid-latitude coastal oceans and providing refugia for eukaryotic organisms during the waning stage of the Marinoan Ice Age.

3.
Nat Commun ; 14(1): 6, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596767

RESUMO

The latest Permian mass extinction (LPME) was triggered by magmatism of the Siberian Traps Large Igneous Province (STLIP), which left an extensive record of sedimentary Hg anomalies at Northern Hemisphere and tropical sites. Here, we present Hg records from terrestrial sites in southern Pangea, nearly antipodal to contemporaneous STLIP activity, providing insights into the global distribution of volcanogenic Hg during this event and its environmental processing. These profiles (two from Karoo Basin, South Africa; two from Sydney Basin, Australia) exhibit significant Hg enrichments within the uppermost Permian extinction interval as well as positive Δ199Hg excursions (to ~0.3‰), providing evidence of long-distance atmospheric transfer of volcanogenic Hg. These results demonstrate the far-reaching effects of the Siberian Traps as well as refine stratigraphic placement of the LPME interval in the Karoo Basin at a temporal resolution of ~105 years based on global isochronism of volcanogenic Hg anomalies.


Assuntos
Mercúrio , Mercúrio/análise , Extinção Biológica , África do Sul , Austrália
4.
Nat Commun ; 14(1): 345, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670099

RESUMO

Decomposition of soil organic matter (SOM) can be stimulated by fresh organic matter input, a phenomenon known as the 'priming effect'. Despite its global importance, the relationship of the priming effect to mineral weathering and nutrient release remains unclear. Here we show close linkages between mineral weathering in the critical zone and primed decomposition of SOM. Intensified mineral weathering and rock-derived nutrient release are generally coupled with primed SOM decomposition resulting from "triggered" microbial activity. Fluxes of organic matter products decomposed via priming are linearly correlated with weathering congruency. Weathering congruency influences the formation of organo-mineral associations, thereby modulating the accessibility of organic matter to microbial decomposers and, thus, the priming effect. Our study links weathering with primed SOM decomposition, which plays a key role in controlling soil C dynamics in space and time. These connections represent fundamental links between long-term lithogenic element cycling (= weathering) and rapid turnover of carbon and nutrients (= priming) in soil.


Assuntos
Microbiologia do Solo , Tempo (Meteorologia) , Solo , Minerais , Carbono
6.
Nat Commun ; 13(1): 1307, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264554

RESUMO

The sources of isotopically light carbon released during the end-Triassic mass extinction remain in debate. Here, we use mercury (Hg) concentrations and isotopes from a pelagic Triassic-Jurassic boundary section (Katsuyama, Japan) to track changes in Hg cycling. Because of its location in the central Panthalassa, far from terrigenous runoff, Hg enrichments at Katsuyama record atmospheric Hg deposition. These enrichments are characterized by negative mass independent fractionation (MIF) of odd Hg isotopes, providing evidence of their derivation from terrestrial organic-rich sediments (Δ199Hg < 0‰) rather than from deep-Earth volcanic gases (Δ199Hg ~ 0‰). Our data thus provide evidence that combustion of sedimentary organic matter by igneous intrusions and/or wildfires played a significant role in the environmental perturbations accompanying the event. This process has a modern analog in anthropogenic combustion of fossil fuels from crustal reservoirs.


Assuntos
Mercúrio , Monitoramento Ambiental , Sedimentos Geológicos , Isótopos , Mercúrio/análise , Isótopos de Mercúrio/análise , Erupções Vulcânicas
7.
Nat Commun ; 13(1): 299, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027546

RESUMO

Direct evidence of intense chemical weathering induced by volcanism is rare in sedimentary successions. Here, we undertake a multiproxy analysis (including organic carbon isotopes, mercury (Hg) concentrations and isotopes, chemical index of alteration (CIA), and clay minerals) of two well-dated Triassic-Jurassic (T-J) boundary sections representing high- and low/middle-paleolatitude sites. Both sections show increasing CIA in association with Hg peaks near the T-J boundary. We interpret these results as reflecting volcanism-induced intensification of continental chemical weathering, which is also supported by negative mass-independent fractionation (MIF) of odd Hg isotopes. The interval of enhanced chemical weathering persisted for ~2 million years, which is consistent with carbon-cycle model results of the time needed to drawdown excess atmospheric CO2 following a carbon release event. Lastly, these data also demonstrate that high-latitude continental settings are more sensitive than low/middle-latitude sites to shifts in weathering intensity during climatic warming events.

8.
Proc Natl Acad Sci U S A ; 117(25): 14005-14014, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513736

RESUMO

Paleozoic and Precambrian sedimentary successions frequently contain massive dolomicrite [CaMg(CO3)2] units despite kinetic inhibitions to nucleation and precipitation of dolomite at Earth surface temperatures (<60 °C). This paradoxical observation is known as the "dolomite problem." Accordingly, the genesis of these dolostones is usually attributed to burial-hydrothermal dolomitization of primary limestones (CaCO3) at temperatures of >100 °C, thus raising doubt about the validity of these deposits as archives of Earth surface environments. We present a high-resolution, >63-My-long clumped-isotope temperature (TΔ47) record of shallow-marine dolomicrites from two drillcores of the Ediacaran (635 to 541 Ma) Doushantuo Formation in South China. Our T∆47 record indicates that a majority (87%) of these dolostones formed at temperatures of <100 °C. When considering the regional thermal history, modeling of the influence of solid-state reordering on our TΔ47 record further suggests that most of the studied dolostones formed at temperatures of <60 °C, providing direct evidence of a low-temperature origin of these dolostones. Furthermore, calculated δ18O values of diagenetic fluids, rare earth element plus yttrium compositions, and petrographic observations of these dolostones are consistent with an early diagenetic origin in a rock-buffered environment. We thus propose that a precursor precipitate from seawater was subsequently dolomitized during early diagenesis in a near-surface setting to produce the large volume of dolostones in the Doushantuo Formation. Our findings suggest that the preponderance of dolomite in Paleozoic and Precambrian deposits likely reflects oceanic conditions specific to those eras and that dolostones can be faithful recorders of environmental conditions in the early oceans.

9.
Sci Bull (Beijing) ; 65(24): 2141-2149, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36732967

RESUMO

The rapid diversification of early animals during the Ediacaran (635-541 Ma) and early Cambrian (ca. 541-509 Ma) has frequently been attributed to increasing oceanic oxygenation. However, the pattern of oceanic oxygenation and its relationship to early animal evolution remain in debate. In this review, we examine the redox structure of Ediacaran and early Cambrian oceans and its controls, offering new insights into contemporaneous oceanic oxygenation patterns and their role in the coevolution of environments and early animals. We review the development of marine redox models which, in combination with independent distal deep-ocean redox proxies, supports a highly redox-stratified shelf and an anoxia-dominated deep ocean during the Ediacaran and early Cambrian. Geochemical and modeling evidence indicates that the marine redox structure was likely controlled by low atmospheric O2 levels and low seawater vertical mixing rates on shelves at that time. Furthermore, theoretical analysis and increasing geochemical evidence, particularly from South China, show that limited sulfate availability was a primary control on the attenuation of mid-depth euxinia offshore, in contrast to the existing paradigm invoking decreased organic carbon fluxes distally. In light of our review, we infer that if oceanic oxygenation indeed triggered the rise of early animals, it must have done so through a shelf oxygenation which was probably driven by elevated oxidant availability. Our review calls for further studies on Ediacaran-Cambrian marine redox structure and its controls, particularly from regions outside of South China, in order to better understand the coevolutionary relationship between oceanic redox and early animals.

10.
Rapid Commun Mass Spectrom ; 34(8): e8678, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31814194

RESUMO

RATIONALE: Carbonate clumped isotope (Δ47 ) thermometry examines the temperature-dependent excess abundance of the 13 C-18 O bond in the carbonate lattice. Inconsistent temperature calibrations and standard values have been reported among laboratories, which has led to the use of equilibrated gases and carbonate standards for standardization. Furthermore, different acid fractionation factors and isotopic parameter sets have been proposed for improving inter-laboratory data comparability. However, few long-term datasets have been generated to explore the effects of these factors on the long-term reproducibility of Δ47 data within a laboratory. METHODS: Four standards (ISTB-1, NBS-19, GBWO4416, and GB04417) were analyzed as unknowns by isotope ratio mass spectrometry from 2015 to 2019. The values of Δ47 were calibrated using the ETH standards. We investigated the Assonov, Brand, and Gonfiantini isotope parameter sets for carbon and oxygen isotopes, as well as two correction schemes of equilibrated gas and carbonate standardization, using the same sample measurements to determine which procedures enhanced reproducibility. ISTB-1 (calcite) and ZK312-346W (dolomite) were measured to determine the 90°C acid fractionation factor. RESULTS: The corrected 90°C acid fractionation factors are 0.076 ± 0.008‰ for ISTB-1 and 0.077 ± 0.009‰ for ZK312-346W. The choice of isotope parameter set had no significant influence on final Δ47 values in this study. However, using the Assonov parameters to calculate Δ47 values improved the reproducibility of the results. The use of carbonate standards improved reproducibility through time compared with the use of equilibrated gases for standardization. CONCLUSIONS: At 90°C, the acid fractionation factors of calcite and dolomite are statistically indistinguishable. We find an insignificant effect from changing the isotope parameter set, suggesting that the choice of isotope parameter set among laboratories is not a major factor affecting inter-laboratory reproducibility. We find that using carbonate standards improved the reproducibility of results, suggesting that the use of carbonate standards may help to achieve inter-laboratory comparability of results in future studies.

11.
Nat Commun ; 10(1): 1563, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952859

RESUMO

The latest Permian mass extinction, the most devastating biocrisis of the Phanerozoic, has been widely attributed to eruptions of the Siberian Traps Large Igneous Province, although evidence of a direct link has been scant to date. Here, we measure mercury (Hg), assumed to reflect shifts in volcanic activity, across the Permian-Triassic boundary in ten marine sections across the Northern Hemisphere. Hg concentration peaks close to the Permian-Triassic boundary suggest coupling of biotic extinction and increased volcanic activity. Additionally, Hg isotopic data for a subset of these sections provide evidence for largely atmospheric rather than terrestrial Hg sources, further linking Hg enrichment to increased volcanic activity. Hg peaks in shallow-water sections were nearly synchronous with the end-Permian extinction horizon, while those in deep-water sections occurred tens of thousands of years before the main extinction, possibly supporting a globally diachronous biotic turnover and protracted mass extinction event.


Assuntos
Extinção Biológica , Sedimentos Geológicos/química , Mercúrio/análise , Erupções Vulcânicas , Mercúrio/química , Isótopos de Mercúrio/análise , Isótopos de Mercúrio/química , Oceanos e Mares
12.
Science ; 361(6398): 174-177, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29853552

RESUMO

Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine-to-calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in the partial pressure of oxygen in the atmosphere at ~400 million years (Ma) ago and reveals a step change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma ago. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma ago.


Assuntos
Atmosfera/química , Evolução Biológica , Oxigênio/análise , Plâncton , Cálcio/análise , Carbonatos/análise , Iodo/análise , Oceanos e Mares
13.
Sci Adv ; 4(4): e1602921, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29651454

RESUMO

Explaining the ~5-million-year delay in marine biotic recovery following the latest Permian mass extinction, the largest biotic crisis of the Phanerozoic, is a fundamental challenge for both geological and biological sciences. Ocean redox perturbations may have played a critical role in this delayed recovery. However, the lack of quantitative constraints on the details of Early Triassic oceanic anoxia (for example, time, duration, and extent) leaves the links between oceanic conditions and the delayed biotic recovery ambiguous. We report high-resolution U-isotope (δ238U) data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran) to characterize the timing and global extent of ocean redox variation during the Early Triassic. Our δ238U record reveals multiple negative shifts during the Early Triassic. Isotope mass-balance modeling suggests that the global area of anoxic seafloor expanded substantially in the Early Triassic, peaking during the latest Permian to mid-Griesbachian, the late Griesbachian to mid-Dienerian, the Smithian-Spathian transition, and the Early/Middle Triassic transition. Comparisons of the U-, C-, and Sr-isotope records with a modeled seawater PO43- concentration curve for the Early Triassic suggest that elevated marine productivity and enhanced oceanic stratification were likely the immediate causes of expanded oceanic anoxia. The patterns of redox variation documented by the U-isotope record show a good first-order correspondence to peaks in ammonoid extinctions during the Early Triassic. Our results indicate that multiple oscillations in oceanic anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.

14.
Nat Commun ; 9(1): 978, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515129

RESUMO

The marine nitrogen cycle is dominated by redox-controlled biogeochemical processes and, therefore, is likely to have been revolutionised in response to Earth-surface oxygenation. The details, timing, and trajectory of nitrogen cycle evolution, however, remain elusive. Here we couple nitrogen and carbon isotope records from multiple drillcores through the Rooihoogte-Timeball Hill Formations from across the Carletonville area of the Kaapvaal Craton where the Great Oxygenation Event (GOE) and its aftermath are recorded. Our data reveal that aerobic nitrogen cycling, featuring metabolisms involving nitrogen oxyanions, was well established prior to the GOE and that ammonium may have dominated the dissolved nitrogen inventory. Pronounced signals of diazotrophy imply a stepwise evolution, with a temporary intermediate stage where both ammonium and nitrate may have been scarce. We suggest that the emergence of the modern nitrogen cycle, with metabolic processes that approximate their contemporary balance, was retarded by low environmental oxygen availability.


Assuntos
Fixação de Nitrogênio , Nitrogênio/química , Oxigênio/química , Ecossistema , Sedimentos Geológicos/química , História Antiga , Ciclo do Nitrogênio , Paleontologia/história , Água do Mar/química , África do Sul
15.
Sci Rep ; 8(1): 3610, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483522

RESUMO

Diffuse reflectance spectrophotometry (DRS) is a new, fast, and reliable method to characterize Fe-oxides in soils. The Fe-oxide mineralogy of the Jiujiang red earth sediments was investigated using DRS to investigate the climate evolution of southern China since the mid-Pleistocene. The DRS results show that hematite/(hematite + goethite) ratios [Hm/(Hm + Gt)] exhibit an upward decreasing trend within the Jiujiang section, suggesting a gradual climate change from warm and humid in the middle Pleistocene to cooler and drier in the late Pleistocene. Upsection trends toward higher (orthoclase + plagioclase)/quartz ratios [(Or + Pl)/Q] and magnetic susceptibility values (χlf) support this inference, which accords with global climate trends at that time. However, higher-frequency climatic subcycles observed in loess sections of northern China are not evident in the Jiujiang records, indicating a relatively lower climate sensitivity of the red earth sediments in southern China.

16.
Proc Natl Acad Sci U S A ; 114(8): 1806-1810, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167796

RESUMO

The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ∼85-90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian-Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ33S with either positive δ34S or negative δ34S that implies mixing of sulfide sulfur with different δ34S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ33S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem.


Assuntos
Extinção Biológica , Sulfeto de Hidrogênio/química , Ferro/química , Oceanos e Mares , Sulfetos/química , Isótopos de Enxofre/química , Animais , Ecossistema , Fósseis , Oxirredução
17.
Proc Natl Acad Sci U S A ; 108(43): 17631-4, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21987794

RESUMO

Periods of oceanic anoxia have had a major influence on the evolutionary history of Earth and are often contemporaneous with mass extinction events. Changes in global (as opposed to local) redox conditions can be potentially evaluated using U system proxies. The intensity and timing of oceanic redox changes associated with the end-Permian extinction horizon (EH) were assessed from variations in (238)U/(235)U (δ(238)U) and Th/U ratios in a carbonate section at Dawen in southern China. The EH is characterized by shifts toward lower δ(238)U values (from -0.37‰ to -0.65‰), indicative of an expansion of oceanic anoxia, and higher Th/U ratios (from 0.06 to 0.42), indicative of drawdown of U concentrations in seawater. Using a mass balance model, we estimate that this isotopic shift represents a sixfold increase in the flux of U to anoxic facies, implying a corresponding increase in the extent of oceanic anoxia. The intensification of oceanic anoxia coincided with, or slightly preceded, the EH and persisted for an interval of at least 40,000 to 50,000 y following the EH. These findings challenge previous hypotheses of an extended period of whole-ocean anoxia prior to the end-Permian extinction.


Assuntos
Evolução Biológica , Extinção Biológica , Sedimentos Geológicos/química , Oxigênio/análise , Paleontologia/métodos , Água do Mar/química , Anaerobiose , China , Oceanos e Mares , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...