Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Curr Opin Plant Biol ; 54: 108-113, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32344327

RESUMO

Allopolyploids, which are formed from the hybridization of two or more diploid progenitor species, often experience subgenome dominance, where one of the parental genomes (subgenomes) has higher levels of gene expression and ultimately greater gene retention compared to the other subgenomes. Low transposable element (TE) abundance near genes has been associated with the dominant subgenome in several allopolyploids, but TEs are unlikely to be the only causal factor responsible for subgenome expression dominance. In this review, we will examine the role of TEs in subgenome dominance as well as discuss how genetic incompatibilities among subgenomes likely contributes to the rapid emergence of subgenome dominance. Lastly, we highlight several burning questions about subgenome dominance that remain largely unanswered.


Assuntos
Genoma de Planta , Poliploidia , Diploide , Regulação da Expressão Gênica de Plantas , Humanos , Hibridização Genética
3.
Nat Genet ; 51(4): 765, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30842601

RESUMO

In the version of this article originally published, author Joshua R. Puzey was incorrectly listed as having affiliation 7 (School of Plant Sciences, University of Arizona, Tucson, AZ, USA); affiliation 6 (Department of Biology, College of William and Mary, Williamsburg, VA, USA) is the correct affiliation. The error has been corrected in the HTML and PDF versions of the article.

4.
Nat Genet ; 51(3): 541-547, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804557

RESUMO

Cultivated strawberry emerged from the hybridization of two wild octoploid species, both descendants from the merger of four diploid progenitor species into a single nucleus more than 1 million years ago. Here we report a near-complete chromosome-scale assembly for cultivated octoploid strawberry (Fragaria × ananassa) and uncovered the origin and evolutionary processes that shaped this complex allopolyploid. We identified the extant relatives of each diploid progenitor species and provide support for the North American origin of octoploid strawberry. We examined the dynamics among the four subgenomes in octoploid strawberry and uncovered the presence of a single dominant subgenome with significantly greater gene content, gene expression abundance, and biased exchanges between homoeologous chromosomes, as compared with the other subgenomes. Pathway analysis showed that certain metabolomic and disease-resistance traits are largely controlled by the dominant subgenome. These findings and the reference genome should serve as a powerful platform for future evolutionary studies and enable molecular breeding in strawberry.


Assuntos
Fragaria/genética , Genoma de Planta/genética , Cromossomos de Plantas/genética , Diploide , Evolução Molecular , Expressão Gênica/genética , Hibridização Genética/genética , Melhoramento Vegetal/métodos , Poliploidia
5.
Gigascience ; 8(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715294

RESUMO

BACKGROUND: Highbush blueberry (Vaccinium corymbosum) has long been consumed for its unique flavor and composition of health-promoting phytonutrients. However, breeding efforts to improve fruit quality in blueberry have been greatly hampered by the lack of adequate genomic resources and a limited understanding of the underlying genetics encoding key traits. The genome of highbush blueberry has been particularly challenging to assemble due, in large part, to its polyploid nature and genome size. FINDINGS: Here, we present a chromosome-scale and haplotype-phased genome assembly of the cultivar "Draper," which has the highest antioxidant levels among a diversity panel of 71 cultivars and 13 wild Vaccinium species. We leveraged this genome, combined with gene expression and metabolite data measured across fruit development, to identify candidate genes involved in the biosynthesis of important phytonutrients among other metabolites associated with superior fruit quality. Genome-wide analyses revealed that both polyploidy and tandem gene duplications modified various pathways involved in the biosynthesis of key phytonutrients. Furthermore, gene expression analyses hint at the presence of a spatial-temporal specific dominantly expressed subgenome including during fruit development. CONCLUSIONS: These findings and the reference genome will serve as a valuable resource to guide future genome-enabled breeding of important agronomic traits in highbush blueberry.


Assuntos
Mirtilos Azuis (Planta)/genética , Evolução Molecular , Genoma de Planta , Haplótipos/genética , Compostos Fitoquímicos/genética , Tetraploidia , Antioxidantes/metabolismo , Vias Biossintéticas/genética , Cromossomos de Plantas/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Anotação de Sequência Molecular , Família Multigênica , Compostos Fitoquímicos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Gigascience ; 7(2): 1-7, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253147

RESUMO

Background: Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Findings: Here we utilized a robust, cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of ∼7.9 million base pairs (Mb), representing a ∼300-fold improvement of the previous version. The vast majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained ∼24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Conclusions: Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions.


Assuntos
Fragaria/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imagem Óptica/métodos , Mapeamento Físico do Cromossomo/métodos , Metilação de DNA , Ontologia Genética , Tamanho do Genoma , Anotação de Sequência Molecular , Imagem Óptica/instrumentação , Mapeamento Físico do Cromossomo/instrumentação , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...