Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 181: 59-68, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866027

RESUMO

Paternal care, where the male provides sole care for the developing brood, is a common form of reproductive investment among teleost fish and ubiquitous in the Centrarchidae family. Throughout the parental care period, nesting males expend energy in a variety of swimming behaviours, including routine and burst swimming, vigilantly monitoring the nest area and protecting the brood from predators. Parental care is an energetically demanding period, which is presumably made even more difficult if fish are exposed to additional challenges such as those arising from human disturbance, resulting in activation of the hypothalamic-pituitary-interrenal axis (i.e., elevation of cortisol). To study this situation, we examined the effects of experimental manipulation of the stress hormone cortisol on locomotor activity and behaviour of nest guarding male smallmouth bass (Micropterus dolomieu). We exogenously elevated circulating cortisol levels (via intracoelomic implants) and attached tri-axial accelerometers to wild smallmouth bass for three days. During the recovery period (i.e., ≤4h post-release), cortisol-treated fish exhibited significantly reduced locomotor activity and performed significantly less burst and routine swimming relative to control fish, indicating cortisol uptake was rapid, as were the associated behavioural responses. Post-recovery (i.e., >4h post-release), fish with high cortisol exhibited lower locomotor activity and reduced routine swimming relative to controls. Fish were less active and reduced routine and burst swimming at night compared to daylight hours, an effect independent of cortisol treatment. Collectively, our results suggest that cortisol treatment (as a proxy for anthropogenic disturbance and stress) contributed to altered behaviour, and consequently cortisol-treated males decreased parental investment in their brood, which could have potential fitness implications.


Assuntos
Bass/fisiologia , Hidrocortisona/farmacologia , Locomoção/efeitos dos fármacos , Comportamento Paterno/efeitos dos fármacos , Natação , Acelerometria , Animais , Masculino , Comportamento de Nidação
2.
Integr Comp Biol ; 57(2): 281-292, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859404

RESUMO

SYNOPSIS: Wild animals maximize fitness through certain behaviors (e.g., foraging, mating, predator avoidance) that incur metabolic costs and often require high levels of locomotor activity. Consequently, the ability of animals to achieve high fitness often relies on their physiological capacity for exercise (aerobic scope) and/or their ability to acquire and utilize energy judiciously. Here, we explore how environmental factors and physiological limitations influence exercise and metabolism in fish while foraging, migrating to spawning grounds, and providing parental care. We do so with three case studies that use a number of approaches to studying exercise in wild fish using biologging and biotelemetry platforms. Bonefish (Albula vulpes) selectively use shallow water tropical marine environments to forage when temperatures are near optimal for aerobic scope and exercise capacity. Bonefish energy expenditure at upper thermal extremes is maximal while activity levels diminish, likely caused by reduced aerobic scope. Pacific salmon (Oncorhynchus spp.) reproductive migrations frequently involve passage through hydraulically challenging areas, and their ability to successfully pass these regions is constrained by their physiological capacity for exercise. Aerobic scope and swim performance are correlated with migration difficulty among sockeye salmon (O. nerka) populations; however, depletion of endogenous energy stores can also limit migration success. In another example, male smallmouth bass (Micropterus dolomieu) allocate a significant amount of energy to nest-guarding behaviors to protect their developing brood. Smallmouth bass body size, endogenous energy reserves, and physiological state influence nest-guarding behaviors and reproductive success. We suggest that in some scenarios (e.g., bonefish foraging, Pacific salmon dam passage) metabolic capacity for exercise may be the strongest determinant of biological fitness, while in others (e.g., long distance salmon migration, smallmouth bass parental care) energy stores may be more important. Interactions among environmental and ecological factors, fish behavior, and fish physiology offer important avenues of mechanistic inquiry to explain ecological dynamics and demonstrate how exercise is fundamental to the ecology of fish.


Assuntos
Comportamento Animal/fisiologia , Peixes/fisiologia , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Migração Animal/fisiologia , Animais , Ecologia , Metabolismo Energético/fisiologia , Masculino
3.
Physiol Biochem Zool ; 90(1): 85-95, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28051942

RESUMO

Parental care is an advantageous reproductive behavior, as the fitness of the caregiver is increased through improving the chances of its offspring's survival. Parental care occurs in a variety of teleost fishes. The body size of parental fish and the size of their brood can affect nest abandonment decisions, where compared with smaller fish with smaller broods, larger fish with larger broods typically invest more energy into reproductive events because they have less future reproductive potential. Although essential for basal metabolism and body maintenance functions, when glucocorticoid hormones (e.g., cortisol) are chronically elevated, as can occur during stress, fish may experience impairments in behavior and immune function, leading to compromised health and condition. Anthropogenic stressors during parental care can lead to elevated stress, therefore making it necessary to understand how stress influences an already-challenging period. Using smallmouth bass as a model, a gradient of body sizes, and experimentally manipulated brood size (i.e., reducing large broods and supplementing small broods) and cortisol levels (i.e., elevated via slow-release intraperitoneal cocoa butter implants containing cortisol versus controls), we tested the hypothesis that the reproductive success and parental care behaviors (i.e., aggression, nest tending) of nest-guarding male smallmouth bass are influenced by parental body size, brood size, and cortisol level. Overall, there was a relationship between cortisol treatment and nest success in which larger fish exhibited lower success when cortisol levels were elevated. Brood size had a significant effect on fish-tending behavior, independent of cortisol level and body size. Lending partial support to our hypothesis, the results of this study indicate that the reproductive success of guarding male smallmouth bass is influenced by cortisol level and that tending behavior is affected by brood size.


Assuntos
Bass/fisiologia , Hidrocortisona/sangue , Comportamento de Nidação/fisiologia , Agressão , Animais , Bass/sangue , Tamanho da Ninhada , Feminino , Masculino , Estresse Fisiológico
4.
Conserv Physiol ; 4(1): cow005, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293757

RESUMO

Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population- and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management.

5.
Behav Processes ; 120: 87-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26327685

RESUMO

Through manipulations of sensory functions, researchers have evaluated the various mechanisms by which migratory fish, particularly in lotic systems, locate natal spawning grounds. Comparatively less work has occurred on the ways by which fish in lentic systems locate spawning sites, and more specifically, the ways by which displaced fish in these systems locate their broods post spawning. The primary goal of this research was to determine the sensory mechanisms used by nesting, male Largemouth Bass to navigate back to their brood following displacement. This was accomplished by comparing the ability of visually impaired, olfactory impaired and geomagnetically impaired individuals to return to their nests after a 200 m displacement, relative to control males. All treatments were designed to be temporary and harmless. We analyzed the data using a generalized linear mixed model, and found that the probability of an olfactory impaired individual returning to his nest within a given time interval was significantly lower than the probability of a geomagnetically impaired individual returning. Overall, it appears as though olfaction is the most important sensory mechanism used for homing in Largemouth Bass.


Assuntos
Bass/fisiologia , Comportamento Animal/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Animais , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA