Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(6): 102070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38645413

RESUMO

Cancer is the leading cause of mortality worldwide. In patients with metastatic non-small cell lung cancer, epidermal growth factor receptor (EGFR) is often overexpressed. Gefitinib (GEF), an inhibitor of EGFR, is approved for the treatment of patients with metastatic non-small cell lung cancer (NSCLC). However, the low solubility and dissolution of GEF limits its bioavailability. Numerous methods, including solid dispersion (SD) and complexation, have been reported to enhance the dissolution of poorly soluble drugs. In this study, GEF complexes were prepared using methyl-ß-cyclodextrin (MßCD) and hydroxypropyl-ß-cyclodextrin (HPßCD) in two molar ratios (1:1 and 1:2), furthermore, GEF SDs were prepared using polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and poloxamer-188(PXM) in three different ratios (1:2, 1:4 and 1:6 w/w). Dissolution studies were conducted on the prepared formulations. Dissolution results showed a 1.22-2.17-fold enhancement in drug dissolution after one hour compared to untreated GEF. Two formulations that showed higher dissolution enhancement were subsequently evaluated for in-vitro cytotoxicity and were formulated into tablets. The selected PVP-GEF (1:4 w/w) and MßCD-GEF (1:1M) formulas displayed improved cytotoxicity compared to untreated GEF. The IC50 values of the PVP-GEF and MßCD-GEF were 4.33 ± 0.66 and 4.84 ± 0.38 µM, respectively which are significantly lower (p < 0.05) than free GEF. In addition, the formulated tablets exhibited enhanced dissolution compared to pure GEF tablets. PVP-GEF SD tablets released (35.1 %±0.4) of GEF after one hour, while GEF-MßCD tablets released (42.2 % ± 0.7) after one hour. In the meantime, tablets containing pure GEF showed only 15 % ± 0.5 release at the same time. The findings of this study offer valuable insights for optimizing the dissolution and hence therapeutic capabilities of GEF while mitigating its limitations.

2.
Pharmaceutics ; 16(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38399350

RESUMO

The journal retracts the article, "Thymoquinone-Loaded Soy-Phospholipid-Based Phytosomes Exhibit Anticancer Potential against Human Lung Cancer Cells" [...].

3.
Pharmaceutics ; 16(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276524

RESUMO

Pharmaceutics retracted the article "Amitriptyline-Based Biodegradable PEG-PLGA Self-Assembled Nanoparticles Accelerate Cutaneous Wound Healing in Diabetic Rats" [...].

4.
Saudi Pharm J ; 31(11): 101781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37860684

RESUMO

Number of factors, including newly emerging infectious diseases and an increase in multi-drug resistant microbial pathogens with particular relevance for Gram-positive bacteria, make the treatment of infectious diseases in hospital-based healthcare a major challenge in the medical community. 4-Aminobenzoic acid (PABA), has demonstrated a variety of biological actions particularly, antimicrobial activity. In our study we coupled this vitamin-like molecule with different isatin derivatives. We investigated the antibacterial activity of the synthesized Schiff's bases. The compounds showed high selective activity against Gram-positive bacteria and showed weak or no activity against both Gram-negative bacteria and fungi. Compound 2a showed highest activity against S. aureus and B. subtilis (MIC 0.09 mmol/L). Additionally, these substances exhibit strong anti-B. Subtilis biofilm formation. We were able to shed insight on the binding mode of these new inhibitors using in silico docking of the compounds in the binding sites of a 3D structure of B. subtilis histidine kinase/Walk. The binding free energy of the compound 2a to the catalytic domain walk, of histidine kinase enzyme of B. subtilis bacteria, was calculated using molecular mechanics/generalized born surface area scoring. The key residues for macromolecule-ligand binding were postulated. The optimized 3D protein-ligand binding modes shed light on the B. subtilis HK/Walk-ligand interactions that afford a means to assess binding affinity to design new HK/Walk inhibitor as antibacterial agents.

5.
ACS Omega ; 8(25): 22406-22413, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396261

RESUMO

Piperine is an alkaloid, but its therapeutic efficacy is limited due to poor aqueous solubility. In this study, piperine nanoemulsions were prepared using oleic acid (oil), Cremophore EL (surfactant), and Tween 80 (co-surfactant) using the high-energy ultrasonication approach. The optimal nanoemulsion (N2) was further evaluated using transmission electron microscopy, release, permeation, antibacterial, and cell viability studies based on minimal droplet size and maximum encapsulation efficiency. The prepared nanoemulsions (N1-N6) showed a transmittance of more than 95%, a mean droplet size between 105 ± 4.11 and 250 ± 7.4 nm, a polydispersity index of 0.19 to 0.36, and a ζ potential of -19 to -39 mV. The optimized nanoemulsion (N2) showed significantly improved drug release and permeation compared with pure piperine dispersion. The nanoemulsions were stable in the tested media. The transmission electron microscopy image showed a spherical and dispersed nanoemulsion droplet. The antibacterial and cell line results of piperine nanoemulsions were significantly better than the pure piperine dispersion. The findings suggested that piperine nanoemulsions may be a more advanced nanodrug delivery system than conventional ones.

7.
Biomedicines ; 11(6)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37371732

RESUMO

Persistent challenges complicating the treatment of breast cancer remain, despite some recent undeniable successes. Sufficient evidence currently exists demonstrating the crucial role of inflammation, characterized by the enhanced activation of Toll-like receptor 4 (TLR4) and the COX-2/PGE2 pathway, in the migration and proliferation of breast cancer cells. Interestingly, the store-operated calcium entry (SOCE) pathway was shown to be essential for the TLR4 activity and COX-2 expression in immune cells such as macrophages and microglia. However, whether SOCE influences inflammatory signaling and the inflammation-induced proliferation and migration of breast cancer cells is still unknown. Thus, the current study intended to delineate the role of SOCE in the TLR4-induced inflammation, migration, and proliferation of breast cancer cells. To this end, MDA-MB-231 breast cancer cells were treated with lipopolysaccharide (LPS) to activate TLR4, BTP2 to inhibit SOCE, and Thapsigargin to induce SOCE. Following these treatments, several experiments were conducted to evaluate the proliferation and migration rates of the MDA-MB-231 cells and the expression of several inflammatory and oncogenic genes, including COX-2, PGE2, IL-6, IL-8, and VEGF. Different techniques were used to achieve the aims of this study, including qRT-PCR, Western blotting, ELISA, MTT, and wound healing assays. This study shows that SOCE inhibition using BTP2 suppressed the LPS-induced migration and proliferation of breast cancer cells. Additionally, treatment with LPS caused approximately six- and three-fold increases in COX-2 mRNA and protein expression, respectively, compared to the controls. The LPS-induced elevations in the COX-2 mRNA and protein levels were suppressed by BTP2 to the control levels. In addition to its effect on COX-2, BTP2 also suppressed the LPS-induced productions of PGE2, IL-6, IL-8, and VEGF. Conversely, SOCE induction using Thapsigargin enhanced the LPS-induced inflammation, migration, and proliferation of breast cancer cells. Collectively, these results provide evidence for the potentially important role of SOCE in inflammation-induced breast cancer progression processes. Thus, we argue that the current study may provide novel targets for designing new therapeutic approaches for the treatment of breast cancer.

8.
Saudi Pharm J ; 31(2): 245-254, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36942275

RESUMO

Store-operated calcium entry (SOCE) is an important pathway for calcium signaling that regulates calcium influx across the plasma membrane upon the depletion of calcium stores in the endoplasmic reticulum. SOCE participates in regulating a number of physiological processes including cell proliferation and migration while SOCE dysregulation has been linked with pathophysiological conditions such as inflammation and cancer. The crosslink between cancer and inflammation has been well-established where abundant evidence demonstrate that inflammation plays a role in cancer pathophysiology and the response of cancer cells to chemotherapeutic agents including cisplatin. Indeed, the efficacy of cisplatin against cancer cells is reduced by inflammation. Interestingly, it was shown that SOCE enhances inflammatory signaling in immune cells. Therefore, the main objectives of this study are to examine the impact of SOCE inhibition on the cisplatin sensitivity of breast cancer cells and to explore its related mechanism in modulating the inflammatory response in breast cancer cells. Our findings showed that SOCE inhibitor (BTP2) enhanced cisplatin cytotoxicity against resistant breast cancer cells via inhibition of cell proliferation and migration as well as induction of apoptosis. We also found an upregulation in the gene expression of two major components of SOCE, STIM1 and ORAI1, in cisplatin-resistant breast cancer cells compared to cisplatin-sensitive breast cancer cells. In addition, cisplatin treatment increased the gene expression of STIM1 and ORAI1 in cisplatin-resistant breast cancer cells. Finally, this study also demonstrated that cisplatin therapy caused an increase in the gene expression of inflammatory mediators COX2, IL-8, and TNF-α as well as COX2 protein and upon SOCE inhibition using BTP2, the effect of cisplatin on the inflammatory mediators was reversed. Altogether, this study has proven the pivotal role of SOCE in cisplatin resistance of breast cancer cells and showed the importance of targeting this pathway in improving breast cancer therapy.

9.
Biomed Res Int ; 2023: 2848198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785668

RESUMO

Clinical multi-drug-resistant bacteria continue to be a serious health problem. Plant-derived molecules are an important source of bioactive compounds to counteract these pathogenic bacteria. In this paper, we studied the chemical composition of the methanol (80%) extract from Pithecellobium dulce seed (Hail, Saudi Arabia) and its ability to inhibit the growth of clinically relevant multi-drug-resistant bacteria. Molecular docking analysis was performed to predict the best compounds with low binding energy and high affinity to interact with two Staphylococcus aureus receptors. Data showed that P. dulce extract is a rich source of D-turanose (55.82%), hexadecanoic acid (11.56%), indole-1-acetic acid (11.42%), inositol (5.78%), and octadecanoic acid (4.36%). The obtained extract showed antibacterial activity towards tested clinical bacterial strains with MIC values ranging from 233 mg/mL for Acinetobacter baumannii to 300 mg/mL for S. aureus and Escherichia coli. Turanose interaction has resulted in -7.4 and -6.6 kcal/mol for 1JIJ and 2XCT macromolecules, while inositol showed energy values (-7.2 and -5.4 kcal/mol) for the same receptors. Multiple identified compounds showed desirable bioavailability properties indicating its great potential therapeutic use in human. Overall, current investigation highlights the possible use of P. dulce extract as a valuable source for drug development against pathogenic drug-resistant bacteria.


Assuntos
Anti-Infecciosos , Fabaceae , Humanos , Staphylococcus aureus , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Bactérias , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sementes
10.
Polymers (Basel) ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297875

RESUMO

Flibanserin (FLB) is a drug used for female hypotensive sexual desire disorder approved by the FDA in August 2015. FLB exhibits extensive hepatic first-pass metabolism and low aqueous solubility, hence poor oral bioavailability. In this study, beta hydroxypropyl cyclodextrin-FLB inclusion complexes were incorporated into orally fast dissolving films. This dosage form was expected to improve FLB aqueous solubility, which would give fast onset of action and decrease presystemic metabolism, hence improving oral bioavailability. The inclusion complex at a ratio of 1:1 was prepared by the kneading method. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffractometry (XRD) were used to confirm complex formation. The Box-Behnken design (15 different formulae of FLB fast-dissolving oral films (FLBFDOFs) were utilized for the optimization of the prepared films. The Expert Design 11 program was utilized to examine the effects of three selected factors, polymer concentration (X1), plasticizer concentration (X2), and disintegrant concentration (X3) on four responses: disintegration time (DT), initial dissolution rate (IDR), dissolution efficiency (DE), and film quality (QF). Numerical optimization was performed by minimizing disintegration time (Y1), while maximizing the initial drug dissolution rate (Y2), dissolution efficiency (Y3), and the quality factor (Y4). The statistical analysis showed that X1 has a significant positive effect on the disintegration time and a significant negative effect on IDR. While X2 and X3 produced a nonsignificant negative effect on IDR. Dissolution efficiency was maximized at the middle concentration of both X2 and X3. The best film quality was observed at the middle concentration of both X1 and X2. In addition, increasing X3 leads to an improvement in film quality. The optimized film cast from an aqueous solution contains hydroxypropyl cellulose (2%) as a hydrophilic film-forming agent and propylene glycol (0.8%) as a plasticizer and cross povidone (0.2%) as a disintegrant. The prepared film released 98% of FLB after 10 min and showed good physical and mechanical properties. The optimized formula showed a disintegration time of 30 s, IDR of 16.6% per minute, DE15 of 77.7%, and QF of 90%. This dosage form is expected to partially avoid the pre-systemic metabolism with a fast onset of action, hence improving its bioavailability that favors an advantage over conventional dosage forms.

11.
Materials (Basel) ; 15(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295383

RESUMO

The solubility of the poorly soluble medicine febuxostat (FXT) (3) in various {polyethylene glycol 400 (PEG 400) (1) + water (H2O) (2)} mixtures has been examined at 298.2-318.2 K and 101.1 kPa. FXT solubility was measured using an isothermal method and correlated with "van't Hoff, Apelblat, Buchowski-Ksiazczak λh, Yalkowsky-Roseman, Jouyban-Acree, and Jouyban-Acree-van't Hoff models". FXT mole fraction solubility was enhanced via an increase in temperature and PEG 400 mass fraction in {(PEG 400 (1) + H2O (2)} mixtures. Neat PEG 400 showed the highest mole fraction solubility of FXT (3.11 × 10-2 at 318.2 K), while neat H2O had the lowest (1.91 × 10-7 at 298.2 K). The overall error value was less than 6.0% for each computational model, indicating good correlations. Based on the positive values of apparent standard enthalpies (46.72-70.30 kJ mol-1) and apparent standard entropies (106.4-118.5 J mol-1 K-1), the dissolution of FXT was "endothermic and entropy-driven" in all {PEG 400 (1) + H2O (2)} mixtures examined. The main mechanism for FXT solvation in {PEG 400 (1) + H2O (2)} mixtures was discovered to be an enthalpy-driven process. In comparison to FXT-H2O, FXT-PEG 400 showed the strongest molecular interactions. In conclusion, these results suggested that PEG 400 has considerable potential for solubilizing a poorly soluble FXT in H2O.

12.
Pharmaceutics ; 14(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145540

RESUMO

The aim of this work was to study the healing activity of amitriptyline (Amitrip) in rat diabetic wounds. A nanoformula of the drug was prepared as Amitrip-based biodegradable PEG-PLGA self-assembled nanoparticles (Amitrip-NPs) with a mean particle size of 67.4 nm. An in vivo investigation was conducted to evaluate the wound-healing process of Amitrip-NPs in streptozotocin-induced diabetic rats. Wound contraction was accelerated in rats treated with Amitrip-NPs. Histological examinations confirmed these findings, with expedited remodeling and collagen deposition in the NPs-treated animals. The formula showed anti-inflammatory activities as demonstrated by inhibition of interleukin-6 (IL-6) expression and tumor necrosis factor-α (TNF-α) expression, as well as enhanced expression of interleukin-10 (IL-10). In addition, Amitrip-NPs protected against malondialdehyde (MDA) buildup and superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic exhaustion. The pro-collagen activity of Amitrip-NPs was confirmed by the observed enhancement of hydroxyproline wounded skin content, upregulation of Col 1A1 mRNA expression and immune expression of collagen type IV expression. Further, Amitrip-NPs significantly increased expression transforming growth factor-ß1 (TGF-ß1), vascular endothelial growth factor-A (VEGF-A), platelet-derived growth factor-B (PDGF-B) and cluster of differentiation 31 (CD31). In conclusion, the developed Amitrip-NPs expedited wound healing in diabetic rats. This involves anti-inflammatory, antioxidant, pro-collagen and angiogenic activities of the prepared NPs. This opens the gate for evaluating the usefulness of other structurally related tricyclic antidepressants in diabetic wounds.

13.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807294

RESUMO

This study examines the solubility and thermodynamics of febuxostat (FBX) in a variety of mono solvents, including "water, methanol (MeOH), ethanol (EtOH), isopropanol (IPA), 1-butanol (1-BuOH), 2-butanol (2-BuOH), ethylene glycol (EG), propylene glycol (PG), polyethylene glycol-400 (PEG-400), ethyl acetate (EA), Transcutol-HP (THP), and dimethyl sulfoxide (DMSO)" at 298.2−318.2 K and 101.1 kPa. The solubility of FBX was determined using a shake flask method and correlated with "van't Hoff, Buchowski-Ksiazczak λh, and Apelblat models". The overall error values for van't Hoff, Buchowski-Ksiazczak λh, and Apelblat models was recorded to be 1.60, 2.86, and 1.14%, respectively. The maximum mole fraction solubility of FBX was 3.06 × 10−2 in PEG-400 at 318.2 K, however the least one was 1.97 × 10−7 in water at 298.2 K. The FBX solubility increased with temperature and the order followed in different mono solvents was PEG-400 (3.06 × 10−2) > THP (1.70 × 10−2) > 2-BuOH (1.38 × 10−2) > 1-BuOH (1.37 × 10−2) > IPA (1.10 × 10−2) > EtOH (8.37 × 10−3) > EA (8.31 × 10−3) > DMSO (7.35 × 10−3) > MeOH (3.26 × 10−3) > PG (1.88 × 10−3) > EG (1.31 × 10−3) > water (1.14 × 10−6) at 318.2 K. Compared to the other combinations of FBX and mono solvents, FBX-PEG-400 had the strongest solute-solvent interactions. The apparent thermodynamic analysis revealed that FBX dissolution was "endothermic and entropy-driven" in all mono solvents investigated. Based on these findings, PEG-400 appears to be the optimal co-solvent for FBX solubility.


Assuntos
Dimetil Sulfóxido , Febuxostat , 2-Propanol , Metanol , Solubilidade , Solventes , Temperatura , Termodinâmica , Água
14.
Drug Deliv ; 29(1): 1892-1902, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35748413

RESUMO

The present study aimed to design and optimize, a nanoconjugate of gabapentin (GPN)-melittin (MLT) and to evaluate its healing activity in rat diabetic wounds. To explore the wound healing potency of GPN-MLT nanoconjugate, an in vivo study was carried out. Diabetic rats were subjected to excision wounds and received daily topical treatment with conventional formulations of GPN, MLT, GPN-MLT nanoconjugate and a marketed formula. The outcome of the in vivo study showed an expedited wound contraction in GPN-MLT-treated animals. This was confirmed histologically. The nanoconjugate formula exhibited antioxidant activities as evidenced by preventing malondialdehyde (MDA) accumulation and superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic exhaustion. Further, the nanoconjugate showed superior anti-inflammatory activity as it inhibited the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). This is in addition to enhancement of proliferation as indicated by increased expression of transforming growth factor-ß (TGF- ß), vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor receptor-ß (PDGFRB). Also, nanoconjugate enhanced hydroxyproline concentration and mRNA expression of collagen type 1 alpha 1 (Col 1A1). In conclusion, a GPN-MLT nanoconjugate was optimized with respect to particle size. Analysis of pharmacokinetic attributes showed the mean particle size of optimized nanoconjugate as 156.9 nm. The nanoconjugate exhibited potent wound healing activities in diabetic rats. This, at least partly, involve enhanced antioxidant, anti-inflammatory, proliferative and pro-collagen activities. This may help to develop novel formulae that could accelerate wound healing in diabetes.


Assuntos
Diabetes Mellitus Experimental , Fator A de Crescimento do Endotélio Vascular , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Gabapentina/metabolismo , Gabapentina/uso terapêutico , Meliteno/metabolismo , Meliteno/uso terapêutico , Nanoconjugados/uso terapêutico , Ratos , Ratos Wistar , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
15.
Drug Deliv ; 29(1): 807-820, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35266425

RESUMO

Prostate cancer (PC) is emerging as one of the leading causes of mortality and morbidity worldwide. Curcumin (CUR) is a well-known phytochemical, and scorpion venom (SV) is a natural peptide with proven anticancer properties. However, these natural bioactive agents are limited by low solubility, low bioavailability, poor thermal stability, and short half-lives. Therefore, the aim of this study was to fabricate SV-conjugated CUR phytosomes as promising functionalized nanovesicles and assess their anticancer efficacy in human prostatic cancer PC3 cells. CUR-Phytosome-SV was fabricated using experimental design software in which the zeta potential and particle sizes were used as dependent variables. The anticancer effect of the fabricated formulation was determined by performing a tetrazolium (MTT) assay, cell cycle analysis, annexin V staining, and examining the expression levels of Bcl-associated X-protein (Bax), p53, caspase-3, B-cell lymphoma 2 (Bcl-2), nuclear factor kappa beta (NF-kB), and tumor necrosis factor alpha (TNF-α). The particle size of the nanoconjugates was found to be in the range of 137.5 ± 7.9 to 298.4 ± 11.9 nm, and the zeta potential was 2.9 ± 0.1 to 26.9 ± 1.2 mV. The outcome of the MTT assay showed that curcumin-Phospholipon®-scorpion venom (CUR-PL-SV) exhibited a satisfactory level of cytotoxicity, and the IC50 was found to be lower than CUR and PL-SV individually. Cell cycle analysis showed predominantly cell cycle arrest at the G2-M and pre-G1 phases. In contrast, annexin V staining showed significant early and late apoptosis events in addition to increased necrosis when PC3 cells were treated with CUR-PL-SV. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed a reduction in expression of Bax, p53, caspase-3, NF-kB, TNF-α, and an increase in Bcl-2 expression. Moreover, a MMP analysis showed a reduction in mitochondrial permeability and hence confirmed the superior anticancer potential of CUR-PL-SV. Thus, the present study showed significant anticancer potency of SV-conjugated CUR phytosomes against human prostatic cancer PC3 cells, making it a novel treatment approach for PC.


Assuntos
Antineoplásicos , Curcumina , Neoplasias da Próstata , Venenos de Escorpião , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Curcumina/química , Curcumina/farmacologia , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Venenos de Escorpião/farmacologia
16.
PLoS One ; 17(2): e0264093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35202419

RESUMO

BACKGROUND: Lung cancer in men and women is considered the leading cause for cancer-related mortality worldwide. Anti-cancer peptides represent a potential untapped reservoir of effective cancer therapy. METHODOLOGY: Box-Behnken response surface design was applied for formulating Alendronate sodium (ALS)-mastoparan peptide (MP) nanoconjugates using Design-Expert software. The optimization process aimed at minimizing the size of the prepared ALS-MP nanoconjugates. ALS-MP nanoconjugates' particle size, encapsulation efficiency and the release profile were determined. Cytotoxicity, cell cycle, annexin V staining and caspase 3 analyses on A549 cells were carried out for the optimized formula. RESULTS: The results revealed that the optimized formula was of 134.91±5.1 nm particle size. The novel ALS-MP demonstrated the lowest IC50 (1.3 ± 0.34 µM) in comparison to ALS-Raw (37.6 ± 1.79 µM). Thus, the results indicated that when optimized ALS-MP nanoconjugate was used, the IC50 of ALS was also reduced by half. Cell cycle analysis demonstrated a significantly higher percentage of cells in the G2-M phase following the treatment with optimized ALS-MP nanoconjugates. CONCLUSION: The optimized ALS-MP formula had significantly improved the parameters related to the cytotoxic activity towards A549 cells, compared to control, MP and ALS-Raw.


Assuntos
Alendronato/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanoconjugados/uso terapêutico , Venenos de Vespas/farmacologia , Células A549 , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Humanos , Tamanho da Partícula
17.
Pharm Dev Technol ; 27(2): 134-144, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34806524

RESUMO

The cell-surface molecule CD44 plays a major role in the regulation of cancer stem cells. The CD44 inhibitor compound N'-(1-dimethylaminomethyl-2-oxoindolin-3-ylidene)-2-(benzyloxy)benzohydrazide (OYB), anticancer agent is practically insoluble in water. Hence, the solid dispersion (SD) technique was used for enhancing the dissolution of OYB. The SD of OYB was achieved using OYB:poloxamer 188 (1:7) via the fusion method. The anticancer activities of the free-OYB solution and the SD formulation (OYB-SD) were investigated in-vitro. The dissolution rate of OYB-SD (1:7) increased by 2-fold compared with the untreated drug (51.52-100% at pH 1.2 and 8.25-19.15% at pH 7 buffer). In addition, OYB-SD afforded 3-folds cytotoxic effect, against LoVo cells, compared to the untreated compound (IC50 4.72 ± 0.57 and 13.97 ± 0.90 µg/ml, respectively) and against HepG2 (∼3-fold) (4.98 ± 0.368 and 13.85 ± 1.82 µg/ml, respectively) and MCF-7 (1.4-fold) cells (15.20 ± 0.20 and 21.12 ± 0.51 µg/ml, respectively), and enhanced the apoptotic potential in LoVo cells compared with free-OYB. The improved cytotoxic activity of the drug might be attributable to the enhanced dissolution of OYB.


Assuntos
Antineoplásicos , Poloxâmero , Antineoplásicos/farmacologia , Poloxâmero/química , Solubilidade , Água/química
18.
Drug Deliv ; 28(1): 1836-1848, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34515597

RESUMO

Natamycin (NT) is a synthetic broad-spectrum antifungal used in eye drops. However, it has low solubility and high molecular weight, limiting its permeation, and generally causes eye discomfort or irritation when administered. Therefore, the present study aimed to develop an ophthalmic in situ gel formulation with NT-loaded cubosomes to enhance ocular permeation, improve antifungal activity, and prolong the retention time within the eye. The NT-loaded cubosome (NT-Cub) formula was first optimized using an I-optimal design utilizing phytantriol, PolyMulse, and NT as the independent formulation factors and particle size, entrapment efficiency %, and inhibition zone as responses. Phytantriol was found to increase particle size and entrapment efficiency %. Higher levels of PolyMulse slightly increased the inhibition zone whereas a decrease in particle size and EE% was observed. Increasing the NT level initially increased the entrapment efficiency % and inhibition zone. The optimized NT-Cub formulation was converted into an in situ gel system using 1.5% Carbopol 934. The optimum formula showed a pH-sensitive increase in viscosity, favoring prolonged retention in the eye. The in vitro release of NT was found to be 71 ± 4% in simulated tear fluid. The optimum formulation enhanced the ex vivo permeation of NT by 3.3 times compared to a commercial formulation and 5.2 times compared to the NT suspension. The in vivo ocular irritation test proved that the optimum formulation is less irritating than a commercial formulation of NT. This further implies that the developed formulation produces less ocular irritation and can reduce the required frequency of administration.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Géis/química , Natamicina/farmacologia , Acrilatos/química , Administração Oftálmica , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Química Farmacêutica , Portadores de Fármacos , Liberação Controlada de Fármacos , Testes de Sensibilidade Microbiana , Natamicina/administração & dosagem , Natamicina/farmacocinética , Tamanho da Partícula , Coelhos
19.
Saudi Pharm J ; 29(9): 963-975, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34588842

RESUMO

Flibanserin (FLB), an antiserotonin drug, is used to treat women with hypoactive sexual appetite disorder. FLB shows low bioavailability (~33%) probably due to its low water solubility. The current study investigated the impact of hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and sodium lauryl sulfate (SLS) on the dissolution and permeation of FLB. HP-ß-CD-FLB inclusion complexes were prepared using physical mixing and kneading at 1:1 and 1:2 M ratios and characterized using differential scanning calorimetry, Fourier transform infrared spectroscopy, and powder X-ray diffractometry. The dissolution and permeation of the complexes through a cellophane membrane were performed in, 0.1, 0.3 and 0.5% SLS in phosphate buffer (pH 6.8). Derived from the slope of the linear phase solubility diagram, the apparent stability constant (K 1:1) was 372.54 M-1. Kneading changed the crystalline form of FLB to an amorphous appearance characterized by minimal crystalline peaks, indicating successful inclusion complex formation. In addition, the HP-ß-CD-FLB inclusion complexes showed twofold increased dissolution efficiency at 6 h. The cumulative FLB amount permeated at 6 h increased from 14.1% to 21.88% and 34.56% in the presence of 0.1% and 0.3% of SLS, respectively. However, increasing SLS to 0.5% did not show an increase in FLB permeation. Therefore, the HP-ß-CD-FLB inclusion complex has an improved dissolution rate compared to FLB alone. The presence of SLS in the dissolution medium increases the dissolution rate of pure FLB and its complex with HP-ß-CD. kneaded 1:1 complex was formulated bioadhesive buccal tablets and showed enhanced drug release.

20.
Front Pharmacol ; 12: 682337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335251

RESUMO

The therapeutic efficacy of antineoplastic agents possessing a selective target to the nucleus of the cancer cells could be enhanced through novel formulation approaches. Thus, toward the improvement of the anticancer potential of 2-methoxy estradiol (2 ME) on prostate cancer, the drug was entrapped into the hydrophobic micelles core formulated with Phospholipon 90G and d-α-tocopheryl polyethylene glycol succinate (TPGS). Optimization of the formulation was done by Box-Behnken statistical design using Statgraphics software to standardize percentages of TPGS and phospholipid to obtain the smallest particle size. The optimized formulation was found to be spherical with nanometer size of 152 ± 5.2 nm, and low PDI (0.234). The entrapment efficiency of the micelles was 88.67 ± 3.21% with >93% release of 2 ME within 24 h. There was a 16-fold increase in apoptosis and an 8-fold increase in necrosis of the PC-3 cells when incubated with 2 ME micellar delivery compared to control cells (2.8 ± 0.2%). This increased apoptosis was further correlated with increased BAX expression (11.6 ± 0.7) and decreased BCL-2 expression (0.29 ± 0.05) in 2 ME micelles treated cells when compared to the control group. Further, loss of mitochondrial membrane potential (∼50-fold) by the drug-loaded micelles and free drug compared to control cells was found to be due to the generation of ROS. Findings on cell cycle analysis revealed the significant arrest of the G2-M phase of the PC-3 cells when incubated with the optimized formulation. Simultaneously, a significantly increased number of cells in pre-G1 revealed the maximum apoptotic potential of the drug when delivered via micellar formulation. Finally, upregulation of caspase-9, p53, and NO, with downregulation of TNF-α, NF-κß, and inflammatory mediators of the PC-3 cells established the superiority of the micellar approach against prostate cancer. In summary, the acquired results highlighted the potentiality of the 2 ME-micellar delivery tool for controlling the growth of prostate cancer cells for improved efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...