Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 1): 130359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387643

RESUMO

Vanillin dehydrogenase (VDH) has recently come forward as an important enzyme for the commercial production of vanillic acid from vanillin in a one-step enzymatic process. However, VDH with high alkaline tolerance and efficiency is desirable to meet the biorefinery requirements. In this study, computationally guided site-directed mutagenesis was performed by increasing the positive and negative charges on the surface and near the active site of the VDH from the alkaliphilic marine bacterium Bacillus ligniniphilus L1, respectively. In total, 20 residues including 15 from surface amino acids and 5 near active sites were selected based on computational analysis and were subjected to site-directed mutations. The optimum pH of the two screened mutants including I132R, and T235E from surface residue and near active site mutant was shifted to 9, and 8.6, with a 2.82- and 2.95-fold increase in their activity compared to wild enzyme at pH 9, respectively. A double mutant containing both these mutations i.e., I132R/T235E was produced which showed a shift in optimum pH of VDH from 7.4 to 9, with an increase of 74.91 % in enzyme activity. Therefore, the double mutant of VDH from the L1 strain (I132R/T235E) produced in this study represents a potential candidate for industrial applications.


Assuntos
Aldeído Oxirredutases , Bacillus , Extremófilos , Mutagênese Sítio-Dirigida , Concentração de Íons de Hidrogênio
2.
Environ Res ; 241: 117415, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844684

RESUMO

Periodontitis is a severe form of gum disease caused by bacterial plaque that affects millions of people and has substantial worldwide health and economic implications. However, current clinical antiseptic and antimicrobial drug therapies are insufficient because they frequently have numerous side effects and contribute to widespread bacterial resistance. Recently, nanotechnology has shown promise in the synthesis of novel periodontal therapeutic materials. Nanoparticles are quickly replacing antibiotics in the treatment of bacterial infections, and their potential application in dentistry is immense. The alarming increases in antimicrobial resistance further emphasize the importance of exploring and utilizing nanotechnology in the fight against tooth diseases particularly periodontitis. We developed 16 different combinations of mesoporous silica nanomaterials in this study by ageing, drying, and calcining them with 11 different metals including silver, zinc, copper, gold, palladium, ruthenium, platinum, nickel, cerium, aluminium, and zirconium. The antibacterial properties of metal-doped silica were evaluated using four distinct susceptibility tests. The agar well diffusion antibacterial activity test, which measured the susceptibility of the microbes being tested, as well as the antibacterial efficacy of mesoporous silica with different silica/metal ratios, were among these studies. The growth kinetics experiment was used to investigate the efficacy of various metal-doped silica nanoparticles on microbial growth. To detect growth inhibitory effects, the colony-forming unit assay was used. Finally, MIC and MBC tests were performed to observe the inhibition of microbial biofilm formation. Our findings show that silver- and zinc-doped silica nanoparticles synthesized using the sol-gel method can be effective antimicrobial agents against periodontitis-causing microbes. This study represents the pioneering work reporting the antimicrobial properties of metal-loaded TUD-1 mesoporous silica, which could be useful in the fight against other infectious diseases too.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Periodontite , Humanos , Prata , Dióxido de Silício , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Periodontite/tratamento farmacológico , Zinco
3.
Sci Total Environ ; 882: 163504, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080307

RESUMO

Carcinogenic hazards to human health were investigated through oral and dermal exposure to organochlorine pesticides (OCPs) from water samples (n = 120) of River Chenab, Pakistan. The Pioneering study aimed to employ an integrated geographic information system (GIS) based geostatistical method for the determination of pollution load by GC-ECD from water of River Chenab. The residual levels of OCPs detected from water samples ranged from 0.54 to 122 ng L-1 with significant prevalence of DDE and α-HCH. Results of the Nemerrow pollution index (NeI), single pollution index (SPI), and comprehensive pollution index (CPI) reflected the downstream zone a stern pollution risk zone. The spatial distribution pattern through geostatistical approaches also revealed significantly higher (p < 0.05) OCP levels in the downstream zone. Risk quotient (RQCCC) of surface water quality with respect to heptachlor epitomized a high level of risk (RQCCC > 1). Non-carcinogenic human health risk (Σ HQ) assessment ranged from 8.39 × 10-9 to 1.7 × 10-3, which represented a marginal risk through oral and dermal exposure. However, carcinogenic risks by oral exposure route were ranged from 3.57 × 10-11 to 4.46 × 10-6. Estimated cancer risk (ΣCR) exhibited a considerable carcinogenic risk posed by heptachlor, α-HCH and dieldrin. It is suggested to employ an immediate mitigation strategy for the constant discharge of OCPs in the studied area.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Humanos , Paquistão , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Medição de Risco , Heptacloro , Qualidade da Água , China
4.
Nanomaterials (Basel) ; 13(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903819

RESUMO

The present work has mathematically modeled the peristaltic flow in nanofluid by using thermal radiation, induced a magnetic field, double-diffusive convection, and slip boundary conditions in an asymmetric channel. Peristalsis propagates the flow in an asymmetric channel. Using the linear mathematical link, the rheological equations are translated from fixed to wave frames. Next, the rheological equations are converted to nondimensional forms with the help of dimensionless variables. Further, the flow evaluation is determined under two scientific assumptions: a finite Reynolds number and a long wavelength. Mathematica software is used to solve the numerical value of rheological equations. Lastly, the impact of prominent hydromechanical parameters on trapping, velocity, concentration, magnetic force function, nanoparticle volume fraction, temperature, pressure gradient, and pressure rise are evaluated graphically.

5.
Sci Total Environ ; 871: 162084, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758692

RESUMO

The present study was conducted to evaluate Carcinogenic (TR) and non-carcinogenic (THQ) human health risk of organochlorine pesticides (OCPs) in three edible fish species (Labeo boga, Channa marulius and Wallago attu) of River Chenab, Pakistan using USEPA human health risk assessment model. Holistic GIS (Geographic information system) based Geo-Statistical approach has been employed for the first time in River Chenab, Pakistan to categorize contaminated risk zones of OCPs based on single pollution index. The ∑OCPs concentrations in fish species were ranged from 5.09 to 414 ng/g with the prevalence of dieldrin. Results of single pollution index of DDE, aldrin, dieldrin and ∑endosulfan revealed River Chenab as polluted and risk zone area. Distribution pattern assessed significantly higher (p < 0.05) concentrations of OCPs in downstream area suggesting substantial pollution of surrounded industrial region. The human health risk assessment depicted no harmful non-carcinogenic (THQ) risk except for ΣOCPs concentration of C. marulius. Significant carcinogenic (TR) health risk exhibited by all examined OCPs from maximum of the studied sites. Therefore, the high carcinogenic human health risk had highlighted an immediate removal of continuous disposal of OCPs in the River Chenab.


Assuntos
Cyprinidae , Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Animais , Humanos , Sistemas de Informação Geográfica , Dieldrin , Paquistão , Poluentes Químicos da Água/análise , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Carcinógenos , Medição de Risco , Monitoramento Ambiental/métodos
6.
Saudi J Biol Sci ; 29(5): 3177-3183, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844379

RESUMO

Because they are totally transferred to the future generations until mutations occur, Y chromosome genetic markers are commonly utilised in forensics for the classification of male lineages for criminal justice purposes. The mutation rate of Rapidly Mutating Y-STRs (RM Y-STRs) markers is high. That is not seen in other Y-STRs markers, and they appear to be effective in distinguishing paternally related men. This study aimed to estimate the population and mutational parameters of 13 RM Y-STRs in 13 unrelated males born in Gilgit, Pakistan. Repeat there was no population substructure and strong discriminating capacity in the counts. In this population, there were higher mutation rates with the unusual structure of repeats. More research is needed to better characterize these loci in diverse Pakistani groups.

7.
Int J Biol Macromol ; 213: 1088-1097, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35697166

RESUMO

The vanins are ectoenzymes with pantetheinase activity and are involved in recycling pantothenic acid (vitamin B5) from pantetheine. Elevated levels of vanin have been linked with the development and severity of several diseases, including steatosis, diabetes, skin diseases, cancer, inflammatory diseases etc. Therefore, vanins have previously been used as a potential drug target to combat related diseases. In this study, we used a molecular docking and molecular dynamic simulation-based approach to screen dual inhibitors of hVnn1, and hVnn2 from a library of 120 chemical candidates. Molecular docking of drug candidates with hVnn1, and hVnn2 using GOLD and MOE revealed that the chemical compound "methotrexate (CID: 126941)" has the highest binding affinity against both the target enzymes which was further validated through molecular dynamic simulation. Toxicity profiling of drug candidates evaluated using Lipinski's rule of five and Molsoft tool, and AdmetSar 2.0 confirms the drug suitability of methotrexate, therefore, suggesting its use as a potential therapeutic agent to inhibit the activity of vainin enzyme in related disease conditions.


Assuntos
Amidoidrolases , Metotrexato , Amidoidrolases/metabolismo , Proteínas Ligadas por GPI/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Panteteína , Ácido Pantotênico
8.
Front Public Health ; 10: 778037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602161

RESUMO

COVID-19 is highly contagious and is caused by severe acute respiratory syndrome coronavirus 2. It spreads by means of respiratory droplets and close contact with infected persons. With the progression of disease, numerous complications develop, particularly among persons with chronic illnesses. Pathological investigations indicate that it affects multiple organs and can induce acute respiratory distress syndrome. Prevention is vital and self-isolation is the best means of containing this virus. Good community health practices like maintaining sufficient distance from other people, wearing protective face masks and regular hand washing should be adopted. Convalescent plasma transfusion and the administration of the antiviral Remdesivir have been found to be effective. Vaccines offer lifesaving protecting against COVID-19 which has killed millions and our best bet for staying safe. Screening, suppression/containment as well as mitigation are the strategies implemented for controlling COVID-19 pandemic. Vaccination is essential to end the COVID-19 pandemic and everyone should have an access to them. The current COVID-19 pandemic brought the global economy to a standstill and has exacted an enormous human and financial toll.


Assuntos
COVID-19 , Transfusão de Componentes Sanguíneos , COVID-19/terapia , Humanos , Imunização Passiva , Pandemias , Plasma , Soroterapia para COVID-19
9.
Mar Drugs ; 20(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35200637

RESUMO

Environmental microbes living in communities engage in complex interspecies interactions that are challenging to decipher. Nevertheless, the interactions provide the basis for shaping community structure and functioning, which is crucial for ecosystem service. In addition, microbial interactions facilitate specific adaptation and ecological evolution processes particularly essential for microbial communities dwelling in resource-limiting habitats, such as the deep oceans. Recent technological and knowledge advancements provide an opportunity for the study of interactions within complex microbial communities, such as those inhabiting deep-sea waters and sediments. The microbial interaction studies provide insights into developing new strategies for biotechnical applications. For example, cooperative microbial interactions drive the degradation of complex organic matter such as chitins and celluloses. Such microbiologically-driven biogeochemical processes stimulate creative designs in many applied sciences. Understanding the interaction processes and mechanisms provides the basis for the development of synthetic communities and consequently the achievement of specific community functions. Microbial community engineering has many application potentials, including the production of novel antibiotics, biofuels, and other valuable chemicals and biomaterials. It can also be developed into biotechniques for waste processing and environmental contaminant bioremediation. This review summarizes our current understanding of the microbial interaction mechanisms and emerging techniques for inferring interactions in deep-sea microbial communities, aiding in future biotechnological and therapeutic applications.


Assuntos
Sedimentos Geológicos/microbiologia , Interações Microbianas , Água do Mar/microbiologia , Biodegradação Ambiental , Biotecnologia/métodos , Humanos , Microbiota
10.
Comb Chem High Throughput Screen ; 25(4): 730-737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33596794

RESUMO

BACKGROUND: Alzheimer's disease is a destructive nervous system disease which causes structural, biochemical and electrical abnormalities inside the human brain and results due to genetic and various environmental factors. Traditional therapeutic agents of Alzheimer's disease such as tacrine and physostigmine have been found to cause adverse effects to the nervous system and gastrointestinal tract. Nanomaterials like graphene, metals, carbon-nanotubes and metal-oxides are gaining attention as potential drugs against Alzheimer's disease due to their properties such as large surface area, which provide clinical efficiency, targeted drug designing and delivery. OBJECTIVES: Designing new drugs by using experimental approaches is a time-consuming, tedious and laborious process which also requires advanced technologies. This study aims to identify some novel drug candidates against Alzheimer's disease with no or less associated side effects using molecular docking approaches Methods: In this study, we utilized nanoinformatics based approaches for evaluating the interaction properties of various nanomaterials and metal nanoparticles with the drug targets, including TRKB kinase domain, EphA4 and histone deacetylase. Furthermore, the drug-likeness of carbon nanotubes was confirmed through ADME analysis. RESULTS: Carbon nanotubes, either single or double-walled in all the three-configurations, including zigzag, chiral, and armchair forms, are found to interact with the target receptors with varying affinities Conclusion: This study provides novel and clearer insights into the interaction properties and drug suitability of known putative nanoparticles as potential agents for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Nanopartículas , Nanotubos de Carbono , Doença de Alzheimer/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Tacrina/farmacologia
11.
Process Biochem ; 110: 216-222, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34421325

RESUMO

The severe acute respiratory syndrome coronavirus 2, famous as COVID-19, has recently emerged as a novel virus and imposed an unrecoverable loss to global health and the economy. At present, no effective drug against COVID-19 is available and currently available viral drugs targeting the viral key proteins of related RNA viruses have been found ineffective against COVID-19. This study evaluated the inhibitors of the viral proteases and other structural proteins, including Mpro (Main protease), RdRp (RNA-dependent RNA polymerase), and spike glycoprotein from synthetic and herbal sources. The molecular docking-based approach was used to identify and evaluate the putative inhibitors of key proteins involved in viral replication and survival. Furthermore, the pharmaceutical properties of these inhibitors were explored to predict the drug suitability as a therapeutic agent against COVID-19 by considering adsorption, distribution, metabolism, and excretion (ADME) using Lipinski's rule or SwissADME. Trandolapril, Benazepril, and Moexipril were evaluated as the best non-carcinogenic and non-toxic potential inhibitors of spike glycoprotein, Mpro, and RdRp, respectively. The drugs showed significant binding affinities against the active sites of respective SARS_CoV-2 target proteins; hence, they can be used as potential therapeutic agents for the treatment of COVID-19.

12.
Saudi J Biol Sci ; 28(7): 4082-4088, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33897263

RESUMO

Since the first case report on COVID-19, its transmission took place rapidly across the globe. Currently, it is reported to be spread into a total of 216 countries and territories. The suppression on industrial and gasoline burning activities accompanied after COVID-19 lock down favorably boosted the nature to restore its deteriorated sections such as in air with the improved Air quality index and in water bodies with the natural tone of purity. Increased use of anti-viral drugs along with herbal therapies has been observed at mass scale as global intervention to prevent the disease. The use of personal protective equipment and disinfection strategies for the control of pandemic has dramatically increased the pollution of plastic and medical waste. This article aims to forecast and highlight the evidence-based impact/changes (+ive and -ive) of coronavirus on the environment, global interventions to prevent the disease along with the levels of effectiveness of personal used protective equipment to stop the spread of coronavirus.

13.
Saudi J Biol Sci ; 28(7): 3943-3947, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33850423

RESUMO

Indigenous medicinal plants enriched with flavonoids, alkaloids, poly-phenolic compounds carry antiseptic, disinfectant and antimicrobial activities. During old era, plant extracts were used as strong antiseptics and disinfectants to get ride from microbes. We aimed to present the herbal formulations and preparations for human health hazards free hand sanitizers based on indigenous medicinal plants with reported effective results against infectious microbes along with least toxic impact on environment. Easily available plants formulations safe to human health and environment are presented with easy procedure for their preparations. Data have been collected from literature for dissemination to scientific community and common society. A recent report published on human health hazards linked with the frequent use of alcohol based hand sanitizers provoked the scientific community to prepare safe hand rubs. National Poison Data System, USA revealed 36.7% increase in alcoholic hand sanitizer exposure and toxicity in first three months of 2020 as compared to 2019. Adaptation of alternative preparations of hand sanitizers based on natural and plant resources are the possible solution to get ride off toxicity problem. There should be more detailed screenings of indigenous plants with enriched flavonoids contents for their antiseptic properties and to develop eco-friendly and effective hand sanitizers as compared to chemical formulations.

14.
Crit Rev Food Sci Nutr ; 61(21): 3537-3554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32820646

RESUMO

In recent years, biorefinery approach with a zero-waste concept has gained a lot research impetus to boost the environment and bioeconomy in a sustainable manner. The wastewater from sugar industries contains miscellaneous compounds and need to be treated chemically or biologically before being discharged into water bodies. Efficient utilization of wastewater produced by sugar industries is a key point to improve its economy. Thus, interest in the sugar industry wastes has grown in both fundamental and applied research fields, over the years. Although, traditional methods being used to process such wastewaters are effective yet are tedious, laborious and time intensive. Considering the diverse nature of wastewaters from various sugar-manufacturing processes, the development of robust, cost-competitive, sustainable and clean technologies has become a challenging task. Under the recent scenario of cleaner production and consumption, the biorefinery and/or close-loop concept, though using different technologies and multi-step processes, namely, bio-reduction, bio-accumulation or biosorption using a variety of microbial strains, has stepped-up as the method of choice for a sustainable exploitation of a wide range of organic waste matter along with the production of high-value products of industrial interests. This review comprehensively describes the use of various microbial strains employed for eliminating the environmental pollutants from sugar industry wastewater. Moreover, the main research gaps are also critically discussed along with the prospects for the efficient purification of sugar industry wastewaters with the concomitant production of high-value products using a biorefinery approach. In this review, we emphasized that the biotransformation/biopurification of sugar industry waste into an array of value-added compounds such as succinic acid, L-arabinose, solvents, and xylitol is a need of hour and is futuristic approach toward achieving cleaner production and consumption.


Assuntos
Açúcares , Águas Residuárias , Biocombustíveis , Resíduos Industriais
15.
Biology (Basel) ; 9(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962156

RESUMO

The outbreak of 2019-novel coronavirus (SARS-CoV-2) that causes severe respiratory infection (COVID-19) has spread in China, and the World Health Organization has declared it a pandemic. However, no approved drug or vaccines are available, and treatment is mainly supportive and through a few repurposed drugs. The urgency of the situation requires the development of SARS-CoV-2-based vaccines. Immunoinformatic and molecular modelling are time-efficient methods that are generally used to accelerate the discovery and design of the candidate peptides for vaccine development. In recent years, the use of multiepitope vaccines has proved to be a promising immunization strategy against viruses and pathogens, thus inducing more comprehensive protective immunity. The current study demonstrated a comprehensive in silico strategy to design stable multiepitope vaccine construct (MVC) from B-cell and T-cell epitopes of essential SARS-CoV-2 proteins with the help of adjuvants and linkers. The integrated molecular dynamics simulations analysis revealed the stability of MVC and its interaction with human Toll-like receptors (TLRs), which trigger an innate and adaptive immune response. Later, the in silico cloning in a known pET28a vector system also estimated the possibility of MVC expression in Escherichia coli. Despite that this study lacks validation of this vaccine construct in terms of its efficacy, the current integrated strategy encompasses the initial multiple epitope vaccine design concepts. After validation, this MVC can be present as a better prophylactic solution against COVID-19.

16.
Biology (Basel) ; 9(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784797

RESUMO

Cellulases are a set of lignocellulolytic enzymes, capable of producing eco-friendly low-cost renewable bioethanol. However, low stability and hydrolytic activity limit their wide-scale applicability at the industrial scale. In this work, we report the domain engineering of endoglucanase (Cel6A) of Thermobifida fusca to improve their catalytic activity and thermal stability. Later, enzymatic activity and thermostability of the most efficient variant named as Cel6A.CBC was analyzed by molecular dynamics simulations. This variant demonstrated profound activity against soluble and insoluble cellulosic substrates like filter paper, alkali-treated bagasse, regenerated amorphous cellulose (RAC), and bacterial microcrystalline cellulose. The variant Cel6A.CBC showed the highest catalysis of carboxymethyl cellulose (CMC) and other related insoluble substrates at a pH of 6.0 and a temperature of 60 °C. Furthermore, a sound rationale was observed between experimental findings and molecular modeling of Cel6A.CBC which revealed thermostability of Cel6A.CBC at 26.85, 60.85, and 74.85 °C as well as structural flexibility at 126.85 °C. Therefore, a thermostable derivative of Cel6A engineered in the present work has enhanced biological performance and can be a useful construct for the mass production of bioethanol from plant biomass.

17.
Sci Total Environ ; 742: 140561, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623176

RESUMO

Till date no medication or vaccine is available to cope with the COVID-19 infection and infection rate is increasing drastically across the globe. Only preventive measures and healthy life style with efficient immune system have been suggested by WHO to fight and stay safe from COVID-19. WHO recommended alcohol based hand sanitizers for frequent hand hygiene, which are mainly made up from ethanol, isopropyl alcohols, hydrogen peroxides in different combinations. These preparations may become toxic to human health and environment when misused. These chemicals have known toxic and hazardous impact on environment when released by evaporation. In early five months of 2020, American Association of Poison Control Center reported 9504 alcoholic hand sanitizer exposure cases in children under the age of 12 years and recognized that even a small amount of alcohol can cause alcohol poisoning in children that is responsible for confusion, vomiting and drowsiness, and in severe cases, respiratory arrest and death. Furthermore, frequent usage of said hand sanitizers has reported increased chance of antimicrobial resistance and chance of other viral diseases. Current review is designed with main objective to highlight the toxic and serious health risks to human health and environment by frequent using hand hygiene products with alcohols based formulations.


Assuntos
Infecções por Coronavirus , Higienizadores de Mão , Pandemias , Pneumonia Viral , Betacoronavirus , COVID-19 , Criança , Desinfecção das Mãos , Humanos , SARS-CoV-2 , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA