Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 559, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823468

RESUMO

BACKGROUND: Sucrose (Suc) hydrolysis is directly associated with plants tolerance to multiple abiotic stresses. Invertase (INV) enzymes irreversibly catalyze Suc degradation to produce glucose (Glc) and fructose (Frc). However, genome-wide identification and function of individual members of the INV gene family in Poncirus trifoliata or its Citrus relatives in response to abiotic stresses are not fully understood. RESULTS: In this report, fourteen non-redundant PtrINV family members were identified in P. trifoliata including seven alkaline/neutral INV genes (PtrA/NINV1-7), two vacuolar INV genes (PtrVINV1-2), and five cell wall INV isoforms (PtrCWINV1-5). A comprehensive analysis based on the biochemical characteristics, the chromosomal location, the exon-intron structures and the evolutionary relationships demonstrated the conservation and the divergence of PtrINVs. In addition, expression analysis of INV genes during several abiotic stresses in various tissues indicated the central role of A/NINV7 among INV family members in response to abiotic stresses. Furthermore, our data demonstrated that high accumulation of Suc, Glc, Frc and total sugar contents were directly correlated with the elevated activities of soluble INV enzymes in the cold-tolerant P. trifoliata, C. ichangensis and C. sinensis, demonstrating the potential role of soluble INV enzymes for the cold tolerance of Citrus. CONCLUSIONS: This work offered a framework for understanding the physiological role of INV genes and laid a foundation for future functional studies of these genes in response to abiotic stresses.


Assuntos
Adaptação Fisiológica/genética , Citrus/genética , Citrus/metabolismo , Temperatura Baixa , Poncirus/genética , Poncirus/metabolismo , Sacarose/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Família Multigênica , Filogenia
2.
Plant J ; 108(3): 705-724, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34398993

RESUMO

Ethylene-responsive factors (ERFs) are plant-specific transcription factors involved in cold stress response, and raffinose is known to accumulate in plants exposed to cold. However, it remains elusive whether ERFs function in cold tolerance by modulating raffinose synthesis. Here, we identified a cold-responsive PtrERF108 from trifoliate orange (Poncirus trifoliata (L.) Raf.), a cold-tolerant plant closely related to citrus. PtrERF108 is localized in the nucleus and has transcriptional activation activity. Overexpression of PtrERF108 conferred enhanced cold tolerance of transgenic lemon, whereas virus-induced gene silencing (VIGS)-mediated knockdown of PtrERF108 in trifoliate orange greatly elevated cold sensitivity. Transcriptome profiling showed that PtrERF108 overexpression caused extensive reprogramming of genes associated with signaling transduction, physiological processes and metabolic pathways. Among them, a raffinose synthase (RafS)-encoding gene, PtrRafS, was confirmed as a direct target of PtrERF108. RafS activity and raffinose content were significantly increased in PtrERF108-overexpressing transgenic plants, but prominently decreased in the VIGS plants under cold conditions. Meanwhile, exogenous replenishment of raffinose could recover the cold tolerance of PtrERF108-silenced plants, whereas VIGS-mediated knockdown of PtrRafS resulted in cold-sensitive phenotype. Taken together, the current results demonstrate that PtrERF108 plays a positive role in cold tolerance by modulation of raffinose synthesis via regulating PtrRafS. Our findings reveal a new transcriptional module composed of ERF108-RafS underlying cold-induced raffinose accumulation in plants.


Assuntos
Resposta ao Choque Frio/fisiologia , Galactosiltransferases/genética , Proteínas de Plantas/genética , Poncirus/fisiologia , Rafinose/biossíntese , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citrus/genética , Citrus/fisiologia , Galactosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Poncirus/efeitos dos fármacos , Regiões Promotoras Genéticas , Rafinose/genética , Rafinose/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
BMC Gastroenterol ; 12: 44, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22551310

RESUMO

BACKGROUND: Diminished bone mineral density (BMD) is of significant concern in pediatric inflammatory bowel disease (IBD). Exact etiology is debatable. The recognition of fibroblast growth factor 23 (FGF23), a phosphaturic hormone related to tumor necrosis factor alpha (TNF-α) makes it plausible to hypothesize its possible relation to this pathology. METHODS: In this follow up case control study, BMD as well as serum levels of FGF23, calcium, phosphorus, alkaline phosphatase, creatinine, parathyroid hormone, 25 hydroxy vitamin D3 and 1, 25 dihydroxy vitamin D3 were measured in 47 children with IBD during flare and reassessed in the next remission. RESULTS: Low BMD was frequent during IBD flare (87.2%) with significant improvement after remission (44.7%). During disease flare, only 21.3% of patients had vitamin D deficiency, which was severe in 12.8%. During remission, all patients had normal vitamin D except for two patients with Crohn's disease (CD) who remained vitamin D deficient. Mean value of serum FGF23 was significantly higher among patients with IBD during flare compared to controls. It showed significant improvement during remission but not to the control values. 1, 25 dihydroxy vitamin D3, FGF23, serum calcium and urinary phosphorus were significant determinants of BMD in IBD patients. CONCLUSIONS: We can conclude that diminished BMD in childhood IBD is a common multifactorial problem. Elevated FGF23 would be a novel addition to the list of factors affecting bone mineral density in this context. Further molecular studies are warranted to display the exact interplay of these factors.


Assuntos
Densidade Óssea/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Doenças Inflamatórias Intestinais/fisiopatologia , Osteoporose/fisiopatologia , Adolescente , Cálcio/metabolismo , Estudos de Casos e Controles , Criança , Colite Ulcerativa/metabolismo , Colite Ulcerativa/fisiopatologia , Doença de Crohn/metabolismo , Doença de Crohn/fisiopatologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Seguimentos , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Masculino , Hormônio Paratireóideo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vitamina D/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...