Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20778, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456727

RESUMO

Nanofluids are considered as smart fluids that can improve heat and mass transfer and have numerous applications in industry and engineering fields such as electronics, manufacturing, and biomedicine. For this reason, blood-based nanofluids with carbon nanotubes (CNTs) as nanoparticles in the presence of a magnetic field are discussed. The nanofluid traverses the porous medium. The nanofluids move on a vertical plate that can be moved. The free convection heat transfer mode is considered when the heat source and heat fluxes are constant. Convective flows are often used in engineering processes, especially in heat removal, such as geothermal and petroleum extraction, building construction, and so on. Heat transfer is used in chemical processing, power generation, automobile manufacturing, air conditioning, refrigeration, and computer technology, among others. Heat transfer fluids such as water, methanol, air and glycerine are used as heat exchange media because these fluids have low thermal conductivity compared to other metals. We have studied the effects of MHD on the heat and velocity of nanofluids keeping efficiency in mind. Laplace transform is used to solve the mathematical model. The velocity and temperature profiles of MHD flow with free convection of nanofluids were described using Nusselt number and skin friction coefficient. An accurate solution is obtained for both the velocity and temperature profiles. The graph shows the effects of the different parameters on the velocity and temperature profiles. The temperature profile improved with increasing estimates of the fraction parameter and the volume friction parameter. The velocity of the nanofluid is also a de-escalating function with the increasing values of the magnetic parameter and the porosity parameter. The thickness of the thermal boundary layer decreases with increasing values of the fractional parameter.

3.
Sci Rep ; 12(1): 12205, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842498

RESUMO

The primary goal of this article is to analyze the oscillating behavior of Maxwell Nano-fluid with regard to heat and mass transfer. Due to high thermal conductivity of engine oil is taken as a base fluid and graphene Nano-particles are introduced in it. Coupled partial differential equations are used to model the governing equations. To evaluate the given differential equations, certain dimensionless factors and Laplace transformations are used. The analytical solution is obtained for temperature, concentration and velocity. The temperature and concentration gradient are also finds to analyze the rate of heat and mass transfer. As a special case, the solution for Newtonian fluid is discussed. Finally, the behaviors of various physical factors are studied graphically for both sine and cosine oscillation and give physical meanings to the parameters.

4.
Sci Rep ; 11(1): 23454, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873194

RESUMO

This article aims to investigate the heat and mass transfer of MHD Oldroyd-B fluid with ramped conditions. The Oldroyd-B fluid is taken as a base fluid (Blood) with a suspension of gold nano-particles, to make the solution of non-Newtonian bio-magnetic nanofluid. The surface medium is taken porous. The well-known equation of Oldroyd-B nano-fluid of integer order derivative has been generalized to a non-integer order derivative. Three different types of definitions of fractional differential operators, like Caputo, Caputo-Fabrizio, Atangana-Baleanu (will be called later as [Formula: see text]) are used to develop the resulting fractional nano-fluid model. The solution for temperature, concentration, and velocity profiles is obtained via Laplace transform and for inverse two different numerical algorithms like Zakian's, Stehfest's are utilized. The solutions are also shown in tabular form. To see the physical meaning of various parameters like thermal Grashof number, Radiation factor, mass Grashof number, Schmidt number, Prandtl number etc. are explained graphically and theoretically. The velocity and temperature of nanofluid decrease with increasing the value of gold nanoparticles, while increase with increasing the value of both thermal Grashof number and mass Grashof number. The Prandtl number shows opposite behavior for both temperature and velocity field. It will decelerate both the profile. Also, a comparative analysis is also presented between ours and the existing findings.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Algoritmos , Simulação por Computador , Ouro/química , Temperatura Alta , Hidrodinâmica , Magnetismo , Matemática , Nanopartículas Metálicas/química , Fenômenos Físicos , Porosidade , Temperatura
5.
Contrast Media Mol Imaging ; 2021: 1101911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992507

RESUMO

Quantum computing is a computer development technology that uses quantum mechanics to perform the operations of data and information. It is an advanced technology, yet the quantum channel is used to transmit the quantum information which is sensitive to the environment interaction. Quantum error correction is a hybrid between quantum mechanics and the classical theory of error-correcting codes that are concerned with the fundamental problem of communication, and/or information storage, in the presence of noise. The interruption made by the interaction makes transmission error during the quantum channel qubit. Hence, a quantum error correction code is needed to protect the qubit from errors that can be caused by decoherence and other quantum noise. In this paper, the digital system design of the quantum error correction code is discussed. Three designs used qubit codes, and nine-qubit codes were explained. The systems were designed and configured for encoding and decoding nine-qubit error correction codes. For comparison, a modified circuit is also designed by adding Hadamard gates.


Assuntos
Metodologias Computacionais , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA