Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37444917

RESUMO

The powder metallurgy method was used to manufacture three Ti-based alloys: Ti-15%Zr-2%Ta-4%Sn (Ti-Zr-Ta-4Sn), Ti-15%Zr-2%Ta-6%Sn (Ti-Zr-Ta-6Sn), and Ti-15%Zr-2%Ta-8%Sn (Ti-Zr-Ta-8Sn). Electrochemical measurements and surface analyses were used to determine the effect of Sn concentration on the corrosion of these alloys after exposure to a simulated body fluid (SBF) solution for 1 h and 72 h. It was found that the passivation of the alloy surface significantly increased when the Sn content increased from 4% to 6% and then to 8%, which led to a significant reduction in corrosion. The impedance spectra derived from the Nyquist graphs also explained how the addition of Sn significantly improved the alloys' polarization resistances. According to the change in the chronoamperometric current at an applied anodic potential over time, the increase in Sn content within the alloy significantly reduced the currents over time, indicating that the uniform and pitting corrosion were greatly decreased. The formation of an oxide layer (TiO2), which was demonstrated by the surface morphology of the alloys after exposure to SBF solution for 72 h and corrosion at 400 mV (Ag/AgCl) for 60 min, was supported by the profile analysis obtained by an X-ray spectroscopy analyzer. It was clear from all of the findings that the tested alloys have a remarkable improvement in resistance to corrosivity when the Sn content was increased to 8%.

2.
Materials (Basel) ; 15(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36556616

RESUMO

Ti-15%Zr alloy and Ti-15%Zr-2%Ta alloy were fabricated to be used in biomedical applications. The corrosion of these two alloys after being immersed in simulated body fluid for 1 h and 72 h was investigated. Different electrochemical methods, including polarization, impedance, and chronoamperometric current with time at 400 mV were employed. Also, the surface morphology and the compositions of its formed film were reported by the use of scanning electron microscope and energy dispersive X-ray. Based on the collected results, the presence of 2%Ta in the Ti-Zr alloy passivated its corrosion by minimizing its corrosion rate. The polarization curves revealed that adding Ta within the alloy increases the corrosion resistance as was confirmed by the impedance spectroscopy and current time data. The change of current versus time proved that the addition of Ta reduces the absolute current even at high anodic potential, 400 mV. The results of both electrochemical and spectroscopic methods indicated that pitting corrosion does not occur for both Ti-Zr and Ti-Zr-Ta alloys, even after their immersion in SBF solutions for 72 h.

3.
Materials (Basel) ; 15(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500058

RESUMO

Very often, pure Ti and (α + ß) Ti-6Al-4V alloys have been used commercially for implant applications, but ensuring their chemical, mechanical, and biological biocompatibility is always a serious concern for sustaining the long-term efficacy of implants. Therefore, there has always been a great quest to explore new biomedical alloying systems that can offer substantial beneficial effects in tailoring a balance between the mechanical properties and biocompatibility of implantable medical devices. With a view to the mechanical performance, this study focused on designing a Ti-15Zr-2Ta-xSn (where x = 4, 6, 8) alloying system with high strength and low Young's modulus prepared by a powder metallurgy method. The experimental results showed that mechanical alloying, followed by spark plasma sintering, produced a fully consolidated (α + ß) Ti-Zr-Ta-Sn-based alloy with a fine grain size and a relative density greater than 99%. Nevertheless, the shape, size, and distribution of α-phase precipitations were found to be sensitive to Sn contents. The addition of Sn also increased the α/ß transus temperature of the alloy. For example, as the Sn content was increased from 4 wt.% to 8 wt.%, the ß grains transformed into diverse morphological characteristics, namely, a thin-grain-boundary α phase (αGB), lamellar α colonies, and acicular αs precipitates and very low residual porosity during subsequent cooling after the spark plasma sintering procedure, which is consistent with the relative density results. Among the prepared alloys, Ti-15Zr-2Ta-8Sn exhibited the highest hardness (s340 HV), compressive yield strength (~1056 MPa), and maximum compressive strength (~1470). The formation of intriguing precipitate-matrix interfaces (α/ß) acting as dislocation barriers is proposed to be the main reason for the high strength of the Ti-15Zr-2Ta-8Sn alloy. Finally, based on mechanical and structural properties, it is envisaged that our developed alloys will be promising for indwelling implant applications.

4.
Chem Asian J ; 16(8): 902-921, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33615706

RESUMO

Quantum dot-sensitized solar cells (QDSSCs) are significant energy-producing devices due to their remarkable capability to growing sunshine and produce many electrons/holes pairs, easy manufacturing, and low cost. However, their power conversion efficiency (4%) is usually worse than that of dye-sensitized solar cells (≤12%); this is mainly due to their narrow absorption areas and the charge recombination happening at the quantum dot/electrolyte and Ti O 2 /electrolyte interfaces. Thus, to raise the power conversion efficiency of QDSSC, new counter electrodes, working electrodes, sensitizers, and electrolytes are required. CdSe thin films have shown great potential for use in photodetectors, solar cells, biosensors, light-emitting diodes, and biomedical imaging systems. This article reviews the CdSe nanomaterials that have been recently used in QDSSCs as sensitizers. Their size, design, morphology, and density all noticeably influence the electron injection efficiency and light-harvesting capacity of these devices. A detailed overview of the development of QDSSCs is presented, including their basic principles, the synthesis methods for their CdSe quantum dots, and the device fabrication processes. Finally, the challenges and opportunities of realizing high-performance CdSe QDSSCs are discussed and some future directions are suggested.

5.
Membranes (Basel) ; 11(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445745

RESUMO

In this study, a magnetic/polyetherimide-acrylonitrile composite nanofiber membrane with effective adsorption of nickel ions in an aqueous solution was created using a simple electrospinning method. Iron oxide nanoparticles (NPs) were stirred and ultrasonically dispersed into a polyetherimide-acrylonitrile solution to create a homogenous NPs suspension, which was placed in an electrospinning machine to produce a uniform and smooth nanofiber composite membrane. Nanoparticle incorporation into this membrane was confirmed using scanning electron microscope, energy dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and NPs aqueous stability from a leaching test. The high adsorption capability of the membrane on nickel ions was attributed to the combination of magnetic NPs, polyetherimide-acrylonitrile matrix, and the nanostructure of the membrane. A membrane containing magnetic NPs demonstrated the maximum adsorption capabilities (102 mg/g) of nickel ions in an aqueous solution. Various kinetic and isotherm models were applied to understand the adsorption behavior, such as pseudo-second-order kinetic and Langmuir isotherm models. A polyetherimide-acrylonitrile composite nanofiber membrane containing magnetic NPs could be used as an environmentally friendly and nontoxic adsorbent for the removal of nickel ions in an aqueous medium due to its ease of preparation and use and stability in aqueous mediums.

6.
Membranes (Basel) ; 11(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466446

RESUMO

Electrospinning is a versatile technique which results in the formation of a fine web of fibers. The mechanical properties of electrospun fibers depend on the choice of solution constituents, processing parameters, environmental conditions, and collector design. Once electrospun, the fibrous web has little mechanical integrity and needs post fabrication treatments for enhancing its mechanical properties. The treatment strategies include both the chemical and physical techniques. The effect of these post fabrication treatments on the properties of electrospun membranes can be assessed through either conducting tests on extracted single fiber specimens or macro scale testing on membrane specimens. The latter scenario is more common in the literature due to its simplicity and low cost. In this review, a detailed literature survey of post fabrication strength enhancement strategies adopted for electrospun membranes has been presented. For optimum effect, enhancement strategies have to be implemented without significant loss to fiber morphology even though fiber diameters, porosity, and pore tortuosity are usually affected. A discussion of these treatments on fiber crystallinity, diameters, and mechanical properties has also been produced. The choice of a particular post fabrication strength enhancement strategy is dictated by the application area intended for the membrane system and permissible changes to the initial fibrous morphology.

7.
Talanta ; 219: 121236, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887127

RESUMO

Medical technologies, such as point-of-care devices and biological and chemical assays which rely on functional materials deposited on top of substrates, are in great demand due to an increase in the prevalence of diseases worldwide. A significant number of these medical technologies are still in their infancy with respect to commercialization because of the high cost, material and complexity of the conventionally available fabrication techniques. As a result, medical technologies, in broad terms, require low cost and mass production fabrication methods in order to overcome the commercialization challenges. Recently, researchers have explored the flexographic printing technique which is widely employed for food packaging and newspaper production. This technique has proved cost-effective, facile, rapid and industrially compatible fabrication technique of functional materials for various applications. In this review, we provide an account of the attempts of flexographic printing made to scale up functional materials on surfaces for biomedical applications. Firstly, we offer justification for demanding high-throughput fabrication techniques. We then present the facile working principle of the flexographic printing and its use in different medical applications, for example chronic disease monitoring devices, colorimetric sensors, electrochemical sensors, assays and drugs. Finally, we discuss challenges of the fabrication technique. The main purpose of this review is to give insights into the usefulness of flexographic printing to the health care industry.


Assuntos
Impressão Tridimensional , Equipamentos e Provisões
8.
Sci Rep ; 10(1): 10368, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587361

RESUMO

This paper explores new routes for flake powder metallurgy, with the aim of designing an effective route for fabricating metal matrix nanocomposites, combining high strength and good ductility. A new route that uses three speeds, instead of the two speeds characterizing the shift-speed ball milling (SSBM) route, has been suggested and implemented. The mechanisms of these routes were illustrated based on the intensity of ball-powder-ball collisions and the morphology evolution. The ball milled powder were characterized using filed emission scanning electron microscope (FESEM), X-ray diffractometer (XRD) and Energy dispersive spectroscopy (EDS) to investigate the morphology evolution of the composites powder and the homogenous distribution of the SiC nanoparticles within the Al matrix. The reinforcing adequacy and interfacial bonding of 2 wt.% SiC nanoparticles in an inductively sintered composite has been investigated. Mechanical testing of the produced bulk composites resulted in achieving superior mechanical properties, characterized by 92% higher hardness, 180% higher yield strength, 101% higher ultimate strength, and 0% loss in uniform elongation, compared with those of regular SSBM. This is attributed to the homogeneous dispersion of the reinforcement into the Al matrix.

9.
Sci Rep ; 10(1): 771, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964954

RESUMO

Radio frequency (RF) magnetron sputtering was used to deposit tungsten disulfide (WS2) thin films on top of soda lime glass substrates. The deposition power of RF magnetron sputtering varied at 50, 100, 150, 200, and 250 W to investigate the impact on film characteristics and determine the optimized conditions for suitable application in thin-film solar cells. Morphological, structural, and opto-electronic properties of as-grown films were investigated and analyzed for different deposition powers. All the WS2 films exhibited granular morphology and consisted of a rhombohedral phase with a strong preferential orientation toward the (101) crystal plane. Polycrystalline ultra-thin WS2 films with bandgap of 2.2 eV, carrier concentration of 1.01 × 1019 cm-3, and resistivity of 0.135 Ω-cm were successfully achieved at RF deposition power of 200 W. The optimized WS2 thin film was successfully incorporated as a window layer for the first time in CdTe/WS2 solar cell. Initial investigations revealed that the newly incorporated WS2 window layer in CdTe solar cell demonstrated photovoltaic conversion efficiency of 1.2% with Voc of 379 mV, Jsc of 11.5 mA/cm2, and FF of 27.1%. This study paves the way for WS2 thin film as a potential window layer to be used in thin-film solar cells.

10.
Ecotoxicol Environ Saf ; 169: 479-486, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30472472

RESUMO

The nanofibers membranes were fabricated by poly(vinyl alcohol)/chitosan (PVA/Chi) using an electro-spun technique for selective and high adsorption of lead (Pb(II)) and cadmium (Cd(II)) ions based on the solution acidity. The PVA/Chi NFs membranes were characterized systematically using several instrumentations. In addition, several experimental parameters such as initial metal ions concentration, interaction time, adsorbent dosage, solution pH and the effects of competing ions on Pb(II) and Cd(II) adsorption were evaluated. The adsorption data were also clarified that the PVA/Chi NFs membranes were exhibited high kinetic performances towards the both toxic ions at the optimum conditions. The adsorption data were manipulated using different kinetics models, and it was confirmed that only pseudo-second-order model obeyed the adsorption kinetics for Pb(II) and Cd(II) ions. Similarly, the equilibrium data were well fitted with the Langmuir adsorption isotherms model, and the maximum adsorption capacity was 266.12 and 148.79 mg/g for Pb(II) and Cd(II) ions, respectively. The Pb(II) and Cd(II) ions adsorptions were also measured to know the selectivity with simulated environmental solution, and the data were confirmed the high selectivity to Pb(II) and Cd(II) ions at the optimum condition and the nanofibers membrane shown the potentiality for possible use in efficient removal of the selected toxic ions from waste samples. Thus, the PVA/Chi NFs are considered to be effective and promising materials for Pb(II) and Cd(II) ions from wastewaters with high efficiency.


Assuntos
Quitosana/química , Metais Pesados/análise , Nanofibras/química , Álcool de Polivinil/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Cádmio/análise , Concentração de Íons de Hidrogênio , Íons , Cinética , Chumbo/análise , Membranas Artificiais , Nanocompostos/química , Águas Residuárias/química
11.
Materials (Basel) ; 9(5)2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28773521

RESUMO

TiC nanofibers reinforced Al matrix composites were produced by High Frequency Induction Heat Sintering (HFIHS).The titanium carbide nanofibers with an average diameter of 90 nm are first prepared by electrospinning technique and high temperature calcination process. A composite solution containing polyacrylonitrile and titanium isopropoxide is first electrospun into the nanofibers, which are subsequently stabilized and then calcined to produce the desired TiC nanofibers. The X-ray diffraction pattern and transmission electron microscopy results show that the main phase of the as-synthesized nanofibers is titanium carbide. The TiC nanofibers is then mixed with the aluminum powders and introduced into high frequency induction heat sintering (HFIHS) to produce composites of TiC nanofibers reinforced aluminum matrix. The potential application of the TiC nanofibers reinforced aluminum matrix composites was systematically investigated. 99.5% relative density and around 85 HV (833 MPa) Vickers hardness of the Al reinforced with 5 wt % TiC nanofiber has been obtained. Furthermore, the sample of Al contains 5 wt % TiC, has the highest value of compression and yield strength of about 415 and 350 MPa, respectively. The ductility of the Al/5 wt % TiC showed increasing with increasing the TiC contents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...