Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Rep ; 14(1): 21789, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294195

RESUMO

The emerging expanding scope of the Internet of Things (IoT) necessitates robust intrusion detection systems (IDS) to mitigate security risks effectively. However, existing approaches often struggle with adaptability to emerging threats and fail to account for IoT-specific complexities. To address these challenges, this study proposes a novel approach by hybridizing convolutional neural network (CNN) and gated recurrent unit (GRU) architectures tailored for IoT intrusion detection. This hybrid model excels in capturing intricate features and learning relational aspects crucial in IoT security. Moreover, we integrate the feature-weighted synthetic minority oversampling technique (FW-SMOTE) to handle imbalanced datasets, which commonly afflict intrusion detection tasks. Validation using the IoTID20 dataset, designed to emulate IoT environments, yields exceptional results with 99.60% accuracy in attack detection, surpassing existing benchmarks. Additionally, evaluation on the network domain dataset, UNSW-NB15, demonstrates robust performance with 99.16% accuracy, highlighting the model's applicability across diverse datasets. This innovative approach not only addresses current limitations in IoT intrusion detection but also establishes new benchmarks in terms of accuracy and adaptability. The findings underscore its potential as a versatile and effective solution for safeguarding IoT ecosystems against evolving security threats.

2.
Crit Rev Anal Chem ; : 1-26, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39282996

RESUMO

The emergence of calixarenes as versatile compounds in recent years marks a significant advancement in scientific research. In the area of analytical chemistry, calixarenes have garnered attention for their utility as selective chemosensors, enabling the sensitive and specific detection of metal ions through colorimetric and fluorimetric methods. Moreover, calixarenes have found applications in bioimaging, where they serve as effective probes for visualizing biological structures and processes with high resolution and sensitivity. Additionally, recent studies have explored the anticancer properties of calixarenes, unveiling their potential as therapeutic agents for cancer treatment. This comprehensive review explores recent advancements in calixarenes chemistry, emphasizing their significance in the colorimetric and fluorimetric detection of metal ions. Additionally, it highlights the mechanisms involved in chemosensor design, providing insights into the underlying principles driving their efficacy. Furthermore, the application of calixarenes in bioimaging, particularly for visualizing cellular structures and processes, is discussed, showing their potential in biomedical research and diagnostics. The anticancer activity of calixarenes and their derivatives is also explored, shedding light on their promising role as therapeutic agents. Through an extensive examination of recent literature, this review provides valuable insights into the multifaceted applications of calixarenes and offers perspectives for future research directions.

3.
PeerJ Comput Sci ; 9: e1656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077568

RESUMO

Background: Software process improvement (SPI) is an indispensable phenomenon in the evolution of a software development company that adopts global software development (GSD) or in-house development. Several software development companies do not only adhere to in-house development but also go for the GSD paradigm. Both development approaches are of paramount significance because of their respective advantages. Many studies have been conducted to find the SPI success factors in the case of companies that opt for in-house development. Still, less attention has been paid to the SPI success factors in the case of the GSD environment for large-scale software companies. Factors that contribute to the SPI success of small as well as medium-sized companies have been identified, but large-scale companies have still been overlooked. The research aims to identify the success factors of SPI for both development approaches (GSD and in-house) in the case of large-scale software companies. Methods: Two systematic literature reviews have been performed. An industrial survey has been conducted to detect additional SPI success factors for both development environments. In the subsequent step, a comparison has been made to find similar SPI success factors in both development environments. Lastly, another industrial survey is conducted to compare the common SPI success factors of GSD and in-house software development, in the case of large-scale companies, to divulge which SPI success factor carries more value in which development environment. For this reason, parametric (Pearson correlation) and non-parametric (Kendall's Tau correlation and the Spearman correlation) tests have been performed. Results: The 17 common SPI factors have been identified. The pinpointed common success factors expedite and contribute to SPI in both environments in the case of large-scale companies.

4.
J Fluoresc ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015296

RESUMO

In this study, we have synthesized a novel Schiff base-centered chemosensor, designated as SB, with the chemical name ((E)-1-(((6-methylbenzo[d]thiazol-2-yl) imino)methyl)naphthalen-2-ol). This chemosensor was structurally characterized by FT-IR, 1H NMR, UV-Vis and fluorescence spectroscopy. After structural characterization the chemosensor SB was subsequently employed for the detection of Cu2+ and Ag+, using fluorescence spectroscopy. The chemosensor SB showed excellent ability to recognize the target metal ions, leading to fluorescence enhancement and color change from yellow to yellowish orange for Cu2+ and yellow to radish for Ag+ ions. The detection capabilities of this chemosensor were impressive, showing excellent selectivity and an exceptionally low detection limit of 0.0016 µM for Cu2+ and 0.00389 µM for Ag+. Most notably, our approach enables the quantitative detection both metal ions in different water and soil samples at trace level. This achievement holds great promise for analytical applications and offers significant contributions to the field of chemical sensing and environmental protection.

5.
Diagnostics (Basel) ; 13(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37685310

RESUMO

Chest disease refers to a variety of lung disorders, including lung cancer (LC), COVID-19, pneumonia (PNEU), tuberculosis (TB), and numerous other respiratory disorders. The symptoms (i.e., fever, cough, sore throat, etc.) of these chest diseases are similar, which might mislead radiologists and health experts when classifying chest diseases. Chest X-rays (CXR), cough sounds, and computed tomography (CT) scans are utilized by researchers and doctors to identify chest diseases such as LC, COVID-19, PNEU, and TB. The objective of the work is to identify nine different types of chest diseases, including COVID-19, edema (EDE), LC, PNEU, pneumothorax (PNEUTH), normal, atelectasis (ATE), and consolidation lung (COL). Therefore, we designed a novel deep learning (DL)-based chest disease detection network (DCDD_Net) that uses a CXR, CT scans, and cough sound images for the identification of nine different types of chest diseases. The scalogram method is used to convert the cough sounds into an image. Before training the proposed DCDD_Net model, the borderline (BL) SMOTE is applied to balance the CXR, CT scans, and cough sound images of nine chest diseases. The proposed DCDD_Net model is trained and evaluated on 20 publicly available benchmark chest disease datasets of CXR, CT scan, and cough sound images. The classification performance of the DCDD_Net is compared with four baseline models, i.e., InceptionResNet-V2, EfficientNet-B0, DenseNet-201, and Xception, as well as state-of-the-art (SOTA) classifiers. The DCDD_Net achieved an accuracy of 96.67%, a precision of 96.82%, a recall of 95.76%, an F1-score of 95.61%, and an area under the curve (AUC) of 99.43%. The results reveal that DCDD_Net outperformed the other four baseline models in terms of many performance evaluation metrics. Thus, the proposed DCDD_Net model can provide significant assistance to radiologists and medical experts. Additionally, the proposed model was also shown to be resilient by statistical evaluations of the datasets using McNemar and ANOVA tests.

6.
Environ Monit Assess ; 195(6): 633, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37131087

RESUMO

We designed and synthesized a fluorescent "turn-on" and colorimetric chemosensor ((E)-1-((p-tolylimino)methyl)naphthalen-2-ol) SB. The structure of the synthesized chemosensor was investigated by 1H NMR, FT-IR, and fluorescence spectroscopy, and its sensing properties were studied toward Mn2+, Cu2+, Pb2+, Cd2+, Na+, Ni2+, Al3+, K+, Ag+, Zn2+, Co2+, Cr3+, Hg2+, Ca2+, and Mg2+. SB showed an excellent colorimetric (yellow to yellowish brown) in MeOH and fluorescence "turn-on" sensing response to Cu2+ in MeOH/Water (10/90, v/v) media. The sensing mechanism of SB toward Cu2+ was investigated by FT-IR, 1H NMR titration, DFT studies, and Job's plot analysis. The detection limit was calculated to be very low 0.0025 µg mL-1 (0.0025 ppm). Furthermore, the test strip containing SB also showed excellent selectivity and sensitivity toward Cu2+ in a solution medium and when supported on a solid medium.


Assuntos
Colorimetria , Bases de Schiff , Espectroscopia de Infravermelho com Transformada de Fourier , Monitoramento Ambiental , Corantes
7.
Crit Rev Anal Chem ; : 1-16, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880659

RESUMO

Fluorometric determination of different biologically, industrially, and environmentally important analytes is a powerful technique because this technique has excellent selectivity, high sensitivity, rapid photoluminescence response, low cost, applicability to bioimaging, and low detection limit. Fluorescence imaging is a powerful technique for screening different analytes in the living system. Heterocyclic organic compounds have been extensively used as a fluorescence chemosensor for the determination of different biologically important cations like Co2+, Zn2+, Cu2+, Hg2+, Ag+, Ni2+, Cr3+, Al3+, Pd2+, Fe3+ Pt2+, Mn2+, Sn2+, Pd2+, Au3+, Pd2+, Cd2+, Pb2+ and other ions in biological and environmental systems. These compounds also showed significant biological applications such as anti-cancer, anti-ulcerogenic, antifungal, anti-inflammatory, anti neuropathic, antihistaminic, antihypertensive, analgesic, antitubercular, antioxidant, antimalarial, antiparasitic, antiglycation, antiviral anti-obesity, and antibacterial potency. In this review, we summarize the heterocyclic organic compounds based on fluorescent chemosensors and their applications in bioimaging studies for the recognition of different biologically important metal ions.

8.
Front Pediatr ; 10: 950406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507133

RESUMO

Background: The acceptance of vaccination against COVID-19 among parents of young children plays a significant role in controlling the current pandemic. A wide range of factors that influence vaccine hesitancy in adults has been reported worldwide, but less attention has been given to COVID-19 vaccination among children. Vaccine hesitancy is considered a major challenge in achieving herd immunity, and it is more challenging among parents as they remain deeply concerned about their child's health. In this context, a systematic review of the current literature is inevitable to assess vaccine hesitancy among parents of young children to ensure a successful ongoing vaccination program. Method: A systematic search of peer-reviewed English literature indexed in Google Scholar, PubMed, Embase, and Web of science was performed using developed keywords between 1 January 2020 and August 2022. This systematic review included only those studies that focused on parental concerns about COVID-19 vaccines in children up to 12 years without a diagnosis of COVID-19. Following PRISMA guidelines, a total of 108 studies were included. The quality appraisal of the study was performed by Newcastle-Ottawa Scale (NOS). Results: The results of 108 studies depict that vaccine hesitancy rates differed globally with a considerably large number of factors associated with it. The highest vaccine hesitancy rates among parents were reported in a study from the USA (86.1%) and two studies from Saudi Arabia (>85%) and Turkey (89.6%). Conversely, the lowest vaccine hesitancy rates ranging from 0.69 and 2% were found in two studies from South Africa and Switzerland, respectively. The largest study (n = 227,740) was conducted in Switzerland while the smallest sample size (n = 12) was represented by a study conducted in the USA. The most commonly reported barriers to childhood vaccination were mothers' lower education level (N = 46/108, 43%), followed by financial instability (N = 19/108, 18%), low confidence in new vaccines (N = 13/108, 12%), and unmonitored social media platforms (N = 5/108, 4.6%). These factors were significantly associated with vaccine refusal among parents. However, the potential facilitators for vaccine uptake among respondents who intended to have their children vaccinated include higher education level (N = 12/108, 11%), followed by information obtained through healthcare professionals (N = 9/108, 8.3%) and strong confidence in preventive measures taken by the government (N = 5/81, 4.6%). Conclusion: This review underscores that parents around the globe are hesitant to vaccinate their kids against COVID-19. The spectrum of factors associated with vaccine hesitancy and uptake varies across the globe. There is a dire need to address vaccine hesitancy concerns regarding the efficacy and safety of approved vaccines. Local context is inevitable to take into account while developing programs to reduce vaccine hesitancy. There is a dire need to devise strategies to address vaccine hesitancy among parents through the identification of attributing factors.

9.
Molecules ; 27(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080410

RESUMO

The advanced technology for synthesizing nanoparticles utilizes natural resources in an environmentally friendly manner. Additionally, green synthesis is preferred to chemical and physical synthesis because it takes less time and effort. The green synthesis of cobalt oxide nanoparticles has recently risen due to its physico-chemical properties. In this study, many functional groups present in Psidium guajava leaf extracts are used to stabilize the synthesis of cobalt oxide nanoparticles. The biosynthesized cobalt oxide nanoparticles were investigated using UV-visible spectroscopic analysis. Additionally, Fourier-transform infrared spectroscopy revealed the presence of carboxylic acids, hydroxyl groups, aromatic amines, alcohols and phenolic groups. The X-ray diffraction analysis showed various peaks ranging from 32.35 to 67.35°, and the highest intensity showed at 36.69°. The particle size ranged from 26 to 40 nm and confirmed the average particle size is 30.9 nm. The green synthesized P. guajava cobalt oxide nanoparticles contain cobalt as the major abundant element, with 42.26 wt% and 18.75 at% confirmed by the EDAX techniques. SEM images of green synthesized P. guajava cobalt oxide nanoparticles showed agglomerated and non-uniform spherical particles. The anti-bacterial activity of green synthesized P. guajava cobalt oxide nanoparticles was evaluated against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli with a 7 to 18 mm inhibitory zone. The photocatalytic activity was evaluated using green synthesized P. guajava cobalt oxide nanoparticles and observed 79% of dye degradation. The MTT assay of P. guajava cobalt oxide nanoparticles showed an excellent cytotoxic effect against MCF 7 and HCT 116 cells compared to normal cells. The percentage of cell viability of P. guajava cobalt oxide nanoparticles was observed as 90, 83, 77, 68, 61, 58 and 52% for MCF-7 cells and 82, 70, 63, 51, 43, 40, and 37% for HCT 116 cells at the concentration of 1.53, 3.06, 6.12, 12.24, 24.48, 50, and 100 µg/mL compared to control cells. These results confirmed that green synthesized P. guajava cobalt oxide nanoparticles have a potential photocatalytic and anti-bacterial activity and also reduced cell viability against MCF-7 breast cancer and HCT 116 colorectal cancer cells.


Assuntos
Nanopartículas Metálicas , Psidium , Antibacterianos/química , Cobalto/metabolismo , Química Verde/métodos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Óxidos , Extratos Vegetais/química , Psidium/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
10.
BJR Open ; 4(1): 20210051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105428

RESUMO

Objectives: Muscle volume may reflect both strength and functional capability and hence is a parameter often measured to assess the effect of various interventions. The aim of the current study was to determine the sensitivity of muscle volume calculations on participant postural position and hence gauge possible errors that may arise in longitudinal studies, especially those where an intervention leads to large muscle changes and potentially the degree of spinal curvature. Methods: Twenty healthy participants (22-49 years, 10 male and 10 female), were recruited and MRI images acquired with them lying in four different positions; neutral spine (P1), decreased lordosis (P2), increased lordosis (P3) and neutral spine repeated (P4). Images were analysed in Simpleware ScanIP, and lumbar muscle volume and Cobb's angle, as an indicator of spine curvature, determined. Results: After comparing volume determinations, no statistically significant differences were found for P1 - P2 and P1 - P4, whereas significant changes were determined for P2 - P3 and P1 - P3. P2 and P3 represent the two extremes of spinal curvature with a difference in Cobb's angle of 17°. However, the mean difference between volume determinations was only 29 cm3. These results suggest the differences in muscle volume determinations are generally greater with increasing differences in curvature between measurements, but that overall the effects are small. Conclusions: Thus, generally, spinal muscle volume determinations are robust in terms of participant positioning. Advances in knowledge: Differences in muscle volume calculations appear to become larger the greater the difference in spinal curvature between positions. Thus, spinal curvature should not have a major impact on the results of spinal muscle volume determinations following interventions in longitudinal studies.

11.
Sci Rep ; 12(1): 14656, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038589

RESUMO

In recent times, biopolymer-metal oxide nanocomposites have gained prominent importance in the attenuation of environmental toxicants from aqueous phase. But lanthanide oxide-based biopolymer nanocomposites have scantly been evaluated for their adsorption potential. A novel guar gum-polyacrylamide/erbium oxide nanocomposite (GG-PAAm/Er2O3 NC) adsorbent was synthesized by copolymerization of guar gum (GG) and acrylamide (AAm) utilizing N-N'-methylenebisacrylamide as a crosslinker and Er2O3 as a reinforcing agent. The adsorptive efficacy of GG-PAAm/Er2O3 nanocomposite was evaluated using nile blue (NB) as a model pollutant dye from aquatic system. The prepared adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, Brunauer-Emmett-Teller (BET) analysis, thermogravimetric analysis, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and high-resolution transmission electron microscopy (HRTEM). The optimal process parameters, which include dosage (0.8 g/L), agitation time (40 min), initial solution pH (6), and initial NB concentration (80 mg/L) were determined by batch methodology. The equilibrium data for NB confiscation was better expressed by Langmuir isotherm model, with maximal adsorption effectiveness (Qm) of 225.88 mg NB/g demonstrating the actively monolayer adsorption onto homogeneous surface of GG-PAAm/Er2O3 NC. The kinetics of NB sorption process onto GG-PAAm/Er2O3 NC was reliable with pseudo-second order model. Thermodynamic parameters such as ΔH° (15-17 kJ/mol) and ΔS° (0.079-0.087 kJ/mol/K), and - ΔG° (8.81-10.55 kJ/mol) for NB validated the endothermic, an increased randomness at the GG-PAAm/Er2O3-NB interface, and spontaneity and feasibility of the process, respectively. The spent nanocomposite was effectively regenerated with NaOH, and could be reused proficiently for five runs demonstrating the high reusability potential of the nanocomposite. The commendable removal efficiency and high reusability of GG-PAAm/Er2O3 NC recommended it to be a highly competent adsorbent for cationic dyes particularly NB diminution from aqueous waste.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Resinas Acrílicas , Adsorção , Corantes/análise , Érbio , Galactanos , Concentração de Íons de Hidrogênio , Cinética , Mananas , Nanocompostos/química , Oxazinas , Óxidos , Gomas Vegetais , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Água , Poluentes Químicos da Água/análise
12.
Nanomaterials (Basel) ; 12(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889617

RESUMO

Due to their appropriate physicochemical properties, nanoparticles are used in nanomedicine to develop drug delivery systems for anticancer therapy. In biomedical applications, metal oxide nanoparticles are used as powerful and flexible multipurpose agents. This work described a green synthesis of Y2O3 nanoparticles (NPs) using the sol-gel technique with the use of aqueous leaf extracts of Lantana camara L (LC). These nanoparticles were characterized with the aid of different methods, including UV, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), transmitted electron microscopy (TEM), and photocatalytic degradation. Y2O3 nanoparticles showed excellent antibacterial activity against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli with a 10 to 15 mm inhibitory zone. Green Y2O3 NPs were released with a 4 h lag time and 80% sustained release rate, indicating that they could be used in drug delivery. In addition, the bioavailability of green Y2O3 NPs was investigated using cell viability in cervical cancer cell lines. These green-synthesized Y2O3 NPs demonstrated photocatalytic degradation, antibacterial, and anticancer properties.

13.
Environ Res ; 213: 113712, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35718168

RESUMO

The adsorption of acridine orange and Cr6+ ion onto plaster of paris reinforced glutamic acid-grafted-polyacrylamide hydrogel nanocomposite modified with riboflavin, Glu-g-PAM/POP/Rb HNC was studied. The Glu-g-PAM/POP/Rb HNC was physico-chemically characterized by Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, transmission electron microscopy and Brunauer-Emmett-Teller analysis. The specific surface area, pore volume and pore diameter were 15.48 m2/g, 0.015 cm3/g and 4.23 nm, respectively. Adsorption process was strategized by response surface methodology (RSM) based on a 3-level 5-factor (initial solution pH, contact time, adsorbent dose, initial adsorbate concentration and temperature) central composite design (CCD), and validity of the estimated parameters was statistically evaluated using analysis of variance (ANOVA). The optimized operating variables were: pH (AO = 10; Cr6+ = 4.15), contact time (AO = 60 min; Cr6+ = 59 min), adsorbent dose (0.8 g/L), initial adsorbate concentration (60 mg/L) and temperature (298 K). Isotherm results were coincident with Langmuir isotherm model. The experimental kinetic adsorption data was congruous with pseudo-second order model, with the uptake rate controlled by both intraparticle and liquid film diffusions. The relatively high Langmuir saturation capacity of 202.63 mg AO/g and 143.68 mg Cr6+/g, supported by the decent recyclability up to four times affirmed the promising performance of the adsorbent. The efficacy of the adsorbent for simultaneous removal of AO and Cr6+ from bi-component system was assessed. The possible adsorption mechanism mainly involved hydrogen bonding, van der Waals forces, electrostatic and π-π interactions. Adsorption of AO and Cr6+ onto Glu-g-PAM/POP/Rb HNC was feasible and exothermic as revealed by the thermodynamic parameters. The findings demonstrated superior adsorbent efficacy for the seizure of pollutants, particularly AO and Cr6+ from aqueous solution.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Laranja de Acridina/análise , Laranja de Acridina/química , Resinas Acrílicas , Adsorção , Sulfato de Cálcio , Ácido Glutâmico , Hidrogéis , Concentração de Íons de Hidrogênio , Cinética , Riboflavina/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Poluentes Químicos da Água/análise
14.
Crit Rev Anal Chem ; : 1-18, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35724248

RESUMO

Pyridine derivatives are the most common and significant heterocyclic compounds, which play an important role in various fields ranging from medicinal to chemosensing applications. Pyridine derivatives possess different biological activities such as antifungal, antibacterial, antioxidant, antiglycation, analgesic, antiparkinsonian, anticonvulsant, anti-inflammatory, ulcerogenic, antiviral, and anticancer activity. Furthermore, these derivatives have a high affinity for various ions and neutral species and can be used as a highly effective chemosensor for the determination of different species. In this review article, generally used synthetic routes of pyridine, structural characterization, medicinal applications, and potential of pyridine derivatives in analytical chemistry as chemosensors have been discussed. We hope this study will support the new thoughts to design biological active compounds and highly selective and effective chemosensors for the detection of various species (anions, cations, and neutral species) in various samples (environmental, agricultural, and biological).

15.
Gels ; 8(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35200513

RESUMO

The present research work was designed to prepare butenafine (BN)-loaded bilosomes (BSs) by the thin-film hydration method. BN is a sparingly water-soluble drug having low permeability and bioavailability. BSs are lipid-based nanovesicles used to entrap water-insoluble drugs for enhanced permeation across the skin. BSs were prepared by the thin-film hydration method and optimized by the Box-Behnken design (BBD) using lipid (A), span 60 (B), and sodium deoxycholate (C) as independent variables. The selected formulation (BN-BSo) was converted into the gel using Carbopol 940 as a gelling agent. The prepared optimized gel (BN-BS-og) was further evaluated for the gel characterization, drug release, drug permeation, irritation, and anti-fungal study. The optimized bilosomes (BN-BSo) showed a mean vesicle size of 215 ± 6.5 nm and an entrapment efficiency of 89.2 ± 1.5%. The DSC study showed that BN was completely encapsulated in the BS lipid matrix. BN-BSog showed good viscosity, consistency, spreadability, and pH. A significantly (p < 0.05) high release (81.09 ± 4.01%) was achieved from BN-BSo compared to BN-BSog (65.85 ± 4.87%) and pure BN (17.54 ± 1.37 %). The permeation study results revealed that BN-BSo, BN-BSog, and pure BN exhibited 56.2 ± 2.7%, 39.2 ± 2.9%, and 16.6 ± 2.3%. The enhancement ratio of permeation flux was found to be 1.4-fold and 3.4-fold for the BN-BS-og and pure BN dispersion. The HET-CAM study showed that BN-BSog was found to be nonirritant as the score was found within the limit. The antifungal study revealed a significant (p < 0.05) enhanced antifungal activity against C. albicans and A. niger. The findings of the study revealed that BS is an important drug delivery system for transdermal delivery.

16.
Biotechnol Appl Biochem ; 69(6): 2387-2398, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35020231

RESUMO

Polymeric nanoparticles are widely studied in the treatment of colorectal cancer. Kaempferitrin-loaded nontoxic and biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) developed by the solvent emulsion evaporation method by improving its solubility and bioavailability. In order to improve the delivery of kaempferitrin (KM) to cancerous cells, folic acid (FA) combined kaempfertrin PLGA NPs were prepared. The goal of the study was whether PLGA NPs with surface KM and FA could help to prevent colorectal cancer. The synthesis of KM with FA in a nanomedicine could be crucial in the development of colon cancer chemotherapeutics. The physicochemical characteristics of synthesized KM-entrapped PLGA NPs were investigated by XRD, FTIR, zeta potential, and TEM. The KM + FA + PLGA NPs showed particle size with 132.9 ± 1.4 nm, zeta potential -15.0 ± 1.73 mV, encapsulation efficiency 67.92 ± 4.8, and drug-loading capacity 0.463 ± 0.173. In vitro cytotoxicity study on HT-29 cell lines using the MTT assay, the apoptotic study revealed that KM + FA + PLGA NPs have an enhanced cytotoxic effect compared to the KM + PLGA NPs drug solution. These findings suggested that KM + FA + PLGA NPs could be an effective chemotherapeutic drug delivery system in colon adenocarcinoma HT-29 cells.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Nanopartículas , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Portadores de Fármacos/química , Ácido Fólico/química , Ácido Láctico , Nanopartículas/química , Tamanho da Partícula
17.
Heliyon ; 7(11): e08474, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34901508

RESUMO

The work reports a method for monitoring anthracene radical-mediated oxidation reactions using electron paramagnetic resonance (EPR) spectroscopy. The formation of anthracene dimer product was well-defined using 1H-NMR and 1H-1H correlation spectroscopy (COSY). Unrestricted 3-21G/B3LYP DFT was used to estimate radical hyperfine spacing (hfs), then to identify the characteristic EPR-spin transitions of anthracene radical intermediate. A detailed investigation of an anthracene oxidation reaction and its possible reaction mechanism in concentrated sulphuric acid is conducted as a model system for polyaromatic hydrocarbons. Peak-to-peak (p2p) intensities of selected EPR-spectral lines were used to evaluate anthracene's oxidation kinetic model. The findings showed that radical intermediate formation is a unimolecular autocatalytic process, dimerization is a pseudo-zero-order reaction, and the latter is the rate-determining step with a half-life of 48 ± 2 min at 25.0 °C.

18.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885712

RESUMO

Mandarin is a favorite fruit of the citrus family. Mandarin seeds are considered a source of nontraditional oil obtained from byproduct materials. This investigation aimed to assess the biomolecules of mandarin seeds and evaluated their antimycotic and antimycotoxigenic impact on fungi. Moreover, it evaluated the protective role of mandarin oil against aflatoxin toxicity in cell lines. The two types of extracted oil (fixed and volatile) were ecofriendly. The fatty acid composition, tocopherol, sterols, and carotenoids were determined in the fixed oil, whereas volatiles and phenolics were estimated in the essential oil. A mixture of the two oils was prepared and evaluated for its antimicrobial impact. The reduction effect of this mixture was also investigated to reduce mycotoxin secretion using a simulated experiment. The protective effect of the oil was evaluated using healthy strains of cell lines. Fixed oil was distinguished by the omega fatty acid content (76.24%), lutein was the major carotenoid (504.3 mg/100 g) and it had a high ß-sitosterol content (294.6 mg/100 g). Essential oil contained limonene (66.05%), α-pinene (6.82%), ß-pinene (4.32%), and γ-terpinene (12.31%) in significant amounts, while gallic acid and catechol were recorded as the dominant phenolics. Evaluation of the oil mix for antimicrobial potency reflected a considerable impact against pathogenic bacteria and toxigenic fungi. By its application to the fungal media, this oil mix possessed a capacity for reducing mycotoxin secretion. The oil mix was also shown to have a low cytotoxic effect against healthy strains of cell lines and had potency in reducing the mortality impact of aflatoxin B1 applied to cell lines. These results recommend further study to involve this oil in food safety applications.


Assuntos
Bactérias/efeitos dos fármacos , Citrus/química , Óleos Voláteis/química , Óleos de Plantas/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/patogenicidade , Monoterpenos Bicíclicos/química , Monoterpenos Bicíclicos/farmacologia , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/farmacologia , Frutas/química , Fungos/efeitos dos fármacos , Humanos , Limoneno/química , Limoneno/farmacologia , Micotoxinas/antagonistas & inibidores , Micotoxinas/química , Óleos Voláteis/farmacologia , Fitosteróis/química , Fitosteróis/farmacologia , Óleos de Plantas/farmacologia , Sitosteroides/química , Sitosteroides/farmacologia
19.
Toxins (Basel) ; 13(11)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34822573

RESUMO

Bottle gourd seeds are surrounded by innumerable bioactive components of phytochemicals. This work aimed to evaluate the effectiveness of bottle gourd extracts as antimicrobial and an-ti-mycotoxigenic against toxigenic fungi and mycotoxins. Polar and nonpolar extracts were made from the seeds. The polar eco-friendly extract was prepared by an ultrasonication-assisted technique utilizing aqueous isopropanol (80%), whereas the non-polar extract was obtained using petroleum ether (40-60). The antioxidant efficacy, total phenolic content, and flavonoid content of the extracts were all measured. The fatty acid profile was measured using GC equipment, and the influence on toxigenic fungus and mycotoxin release was also investigated. The antioxidant efficacy of the polar extract is reflected. The total phenolic values of the oil and polar extract were 15.5 and 267 mg of GAE/g, respectively. The total flavonoid content of the oil was 2.95 mg catechol/g, whereas the isopropyl extract of seeds contained 14.86 mg catechol/g. The polar extract inhibited the DPPH more effectively than oil. When compared to other seed oils, the fatty acid composition differed. The pathogens were distinguished by the MIC and MFC for the polar extract. Three sterols were found in the oil, with a high concentration of B-sitosterols. The oil's valuable -carotene content and tocopherol content were recorded. When compared to traditional antibiotics, the polar extract has shown promising antimicrobial activity against infections and toxigenic fungi. Bottle gourd extracts, as a non-traditional bioactive source, are viewed as a potentially promising alternative that might contribute to increased food safety, shelf-life, and security.


Assuntos
Cucurbitaceae/química , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Micotoxinas/química , Extratos Vegetais/farmacologia , Sementes/química , Antioxidantes/farmacologia , Flavonoides/farmacologia , Fenóis/farmacologia , Extratos Vegetais/química
20.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770907

RESUMO

Rosa gallica var. aegyptiaca is a species of flowering plant belonging to the Rosaceae family that plays an important role as a therapeutic agent for the treatment of specific types of cancer, microbial infections, and diabetes mellitus. This work presents the first report on the evaluation of the antioxidant and antimicrobial potential along with the phytochemical analysis of Rosa gallica var. aegyptiaca leaves. Five leaf extracts of hexane, chloroform, methanol, hydromethanol 80%, and water were prepared. Assessment of antioxidant activity was carried out via DPPH radical scavenging assay. Antimicrobial activity against five foodborne pathogenic bacteria-including Listeria monocytogenes, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Salmonella enteritidis-and the fungus Candida albicans, was examined using the disc diffusion method. Total phenolic content and total flavonoid content were determined using the Folin-Ciocalteu reagent and aluminum chloride methods, respectively. Isolation, identification, and quantification of phenolic compounds were performed using HPLC-DAD analysis. Amongst the five leaf extracts that were investigated, hydromethanol 80% extract possessed the highest extraction yield, antioxidant activity, total phenolic content, and antimicrobial activity against all tested microbial strains. Moreover, this extract furnished six active phenolic compounds: gallic acid (1), (+) catechin (2), chlorogenic acid (3), (-) epicatechin (4), quercetin-3-O-α-d-(glucopyranoside) (5), and quercetin (6). This study provides an alternative utilization of R. gallica var. aegyptiaca leaves as a readily accessible source of natural antioxidants and antimicrobials in the food and pharmaceutical industries.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Rosa/química , Anti-Infecciosos/análise , Anti-Infecciosos/química , Antioxidantes/análise , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Extratos Vegetais/análise , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA