Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 16020, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163398

RESUMO

Using a thermally stratified water-based nanofluid and a permeable stretching sheet as a simulation environment, this research examines the impact of nanoparticle aggregation on MHD mixed convective stagnation point flow. Nanoparticle aggregation is studied using two modified models: the Krieger-Dougherty and the Maxwell-Bruggeman. The present problem's governing equations were transformed into a solvable mathematical model utilizing legitimate similarity transformations, and numerical solutions were then achieved using shooting with Runge-Kutta Fehlberg (RKF) technique in Mathematica. Equilibrium point flow toward permeable stretching surface is important for the extrusion process because it produces required heat and mass transfer patterns and identifies and clarifies fragmented flow phenomena using diagrams. Nanoparticle volume fraction was shown to have an impact on the solutions' existence range, as well. Alumina and copper nanofluids have better heat transfer properties than regular fluids. The skin friction coefficients and Nusselt number, velocity, temperature profiles for many values of the different parameters were obtained. In addition, the solutions were shown in graphs and tables, and they were explained in detail. A comparison of the current study's results with previous results for a specific instance is undertaken to verify the findings, and excellent agreement between them is observed.

3.
J Appl Biomater Funct Mater ; 20: 22808000221114715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912571

RESUMO

The analysis of nanofluids under various physical scenarios convinced the researchers and scientists because of their broad range of applications in potential area of the current time like chemical engineering, biomedical engineering and applied thermal engineering etc. To give the final shape of many industrial and engineering processes, enhanced heat transfer desired, therefore, the study of Al2O3-H2O, γAl2O3-H2O, Al2O3-C2H6O2, and γAl2O3- C2H6O2 nanofluids is reported. The model successfully achieved after mathematical operations and by appealing similarity transforms. To examine the behavior of heat transfer, numerical tools utilized and performed the results. It is observed that enhanced heat transfer in Al2O3-H2O, γAl2O3-H2O, Al2O3-C2H6O2, and γAl2O3-C2H6O2 could be attained by setting nanoparticles concentration up to 20%. For Al2O3-H2O, γAl2O3-H2O, optimum heat transfer trends noticed due to their prominent thermophysical values. Also, fewer effects of combined convection on θ(η) examined.


Assuntos
Convecção , Nanopartículas , Alumínio , Temperatura Alta
4.
Sci Rep ; 12(1): 12656, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879600

RESUMO

A magneto couple stress nanofluid flow along with double diffusive convection is presented for peristaltic induce flow through symmetric nonuniform channel. A comprehensive mathematical model is scrutinized for couple stress nanofluid magneto nanofluids and corresponding equations of motions are tackled by applying small Reynolds and long wavelength approximation in viewing the scenario of the biological flow. Computational solution is exhibited with the help of graphical illustration for nanoparticle volume fraction, solutal concentration and temperature profiles in MATHEMTICA software. Stream function is also computed numerically by utilizing the analytical expression for nanoparticle volume fraction, solutal concentration and temperature profiles. Whereas pressure gradient profiles are investigated analytically. Impact of various crucial flow parameter on the pressure gradient, pressure rise per wavelength, nanoparticle volume fraction, solutal concentration, temperature and the velocity distribution are exhibited graphically. It has been deduced that temperature profile is significantly rise with Brownian motion, thermophoresis, Dufour effect, also it is revealed that velocity distribution really effected with strong magnetic field and with increasing non-uniformity of the micro channel. The information of current investigation will be instrumental in the development of smart magneto-peristaltic pumps in certain thermal and drug delivery phenomenon.


Assuntos
Convecção , Peristaltismo , Modelos Teóricos , Movimento (Física) , Reologia
5.
Sci Rep ; 12(1): 10406, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729246

RESUMO

Ethylene glycol is commonly used as a cooling agent in the engine, therefore the study associated with EG has great importance in engineering and mechanical fields. The hybrid nanofluid has been synthesized by adding copper and graphene nanoparticles into the Ethylene glycol, which obeys the power-law rheological model and exhibits shear rate-dependent viscosity. As a result of these features, the power-law model is utilized in conjunction with thermophysical characteristics and basic rules of heat transport in the fluid to simulate the physical situations under consideration. The Darcy Forchhemier hybrid nanofluid flow has been studied under the influence of heat source and magnetic field over a two-dimensionally stretchable moving permeable surface. The phenomena are characterized as a nonlinear system of PDEs. Using resemblance replacement, the modeled equations are simplified to a nondimensional set of ODEs. The Parametric Continuation Method has been used to simulate the resulting sets of nonlinear differential equations. Figures and tables depict the effects of physical constraints on energy, velocity and concentration profiles. It has been noted that the dispersion of copper and graphene nanoparticulate to the base fluid ethylene glycol significantly improves velocity and heat conduction rate over a stretching surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...