Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496668

RESUMO

Objectives: Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods: We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results: In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions: This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.

4.
Front Oncol ; 13: 1139940, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035171

RESUMO

Objective: The 2-year incidence of brain metastases (BrMs) in stage III non-small lung cell cancer (NSCLC) has been estimated to be around 30%. However, recent clinical trials have demonstrated considerably lower BrMs rates in this patient population. In this study, we aimed to review the real-world incidence, surveillance, and treatment patterns of BrMs in stage III NSCLC. Materials and methods: Using a retrospective single-center study design, we identified patients with stage III NSCLC who received radiation with curative intent over a 10-year period. Outcome variables included BrMs incidence, overall survival (OS), and survival from date of BrMs. Additionally, we assessed patterns of BrMs surveillance in stage III NSCLC and treatment. Results: We identified a total of 279 stage III NSCLC patients, of which 160 with adequate records were included in the final analyses [adenocarcinoma (n = 96), squamous cell carcinoma (n = 53), other histology subtype (n = 11)]. The median OS for the entire cohort was 41 months (95% CI, 28-53), while the median time from BrMs to death was 19 months (95% CI, 9-21). Twenty-three patients (14.4%) received planned surveillance brain MRIs at 6, 12, and 24 months after completion of treatment. The remaining 137 patients (85.6%) received brain MRIs at systemic recurrence (restaging) or when neurologically symptomatic. A total of 37 patients (23%) developed BrMs, with a 2-year cumulative BrMs incidence of 17% (95% CI, 11-23). A higher incidence of BrMs was identified in patients with adenocarcinoma relative to those with squamous cell carcinoma (p < 0.01). Similarly, a higher 2-year BrMs incidence was observed in patients who received planned surveillance brain MRI relative to those who did not, although statistical significance was not reached. Stereotactic radiosurgery (SRS) treated 29 of BrMs patients (78.4%) and was preferred over WBRT, which treated only 3 patients (8.1%). Conclusions: At our center, BrMs incidence in stage III NSCLC patients was lower than historically reported but notably higher than the incidence described in recent clinical trials. Routine BrMs surveillance potentially allows earlier detection of asymptomatic BrMs. However, asymptomatic BrMs were mostly detected on restaging MRI at the time of recurrence.

5.
Nat Commun ; 13(1): 4320, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896547

RESUMO

Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.


Assuntos
Conectoma , Epilepsia Generalizada , Epilepsia do Lobo Temporal , Epilepsia , Adulto , Epilepsia Generalizada/genética , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/genética , Expressão Gênica , Humanos , Imunoglobulina E , Imageamento por Ressonância Magnética , Rede Nervosa
6.
Epilepsia ; 63(8): 2081-2095, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35656586

RESUMO

OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Atrofia/patologia , Biomarcadores , Estudos Transversais , Epilepsia/complicações , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose/complicações
7.
Acta Neuropathol ; 144(1): 107-127, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35551471

RESUMO

Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Convulsões Febris , Proteínas de Peixe-Zebra/metabolismo , Animais , Epilepsia/genética , Epilepsia do Lobo Temporal/genética , Genômica , Gliose/patologia , Hipocampo/patologia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Esclerose/patologia , Convulsões Febris/complicações , Convulsões Febris/genética , Peixe-Zebra
8.
Brain ; 145(4): 1285-1298, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35333312

RESUMO

Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Adulto , Atrofia/patologia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética
9.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388852

RESUMO

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Assuntos
Epilepsia , Microglia , Animais , Encéfalo , Células Endoteliais , Epilepsia/metabolismo , Camundongos , Microglia/metabolismo , Convulsões
10.
Neuroimage Clin ; 31: 102765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339947

RESUMO

Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities in TLE remains inconclusive. We used support vector machine (SV) and deep learning (DL) models based on region of interest (ROI-based) structural (n = 336) and diffusion (n = 863) brain MRI data from patients with TLE with ("lesional") and without ("non-lesional") radiographic features suggestive of underlying hippocampal sclerosis from the multinational (multi-center) ENIGMA-Epilepsy consortium. Our data showed that models to identify TLE performed better or similar (68-75%) compared to models to lateralize the side of TLE (56-73%, except structural-based) based on diffusion data with the opposite pattern seen for structural data (67-75% to diagnose vs. 83% to lateralize). In other aspects, structural and diffusion-based models showed similar classification accuracies. Our classification models for patients with hippocampal sclerosis were more accurate (68-76%) than models that stratified non-lesional patients (53-62%). Overall, SV and DL models performed similarly with several instances in which SV mildly outperformed DL. We discuss the relative performance of these models with ROI-level data and the implications for future applications of machine learning and artificial intelligence in epilepsy care.


Assuntos
Epilepsia do Lobo Temporal , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Esclerose/patologia , Máquina de Vetores de Suporte
11.
Sci Adv ; 6(47)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208365

RESUMO

Epilepsy is increasingly conceptualized as a network disorder. In this cross-sectional mega-analysis, we integrated neuroimaging and connectome analysis to identify network associations with atrophy patterns in 1021 adults with epilepsy compared to 1564 healthy controls from 19 international sites. In temporal lobe epilepsy, areas of atrophy colocalized with highly interconnected cortical hub regions, whereas idiopathic generalized epilepsy showed preferential subcortical hub involvement. These morphological abnormalities were anchored to the connectivity profiles of distinct disease epicenters, pointing to temporo-limbic cortices in temporal lobe epilepsy and fronto-central cortices in idiopathic generalized epilepsy. Negative effects of age on atrophy further revealed a strong influence of connectome architecture in temporal lobe, but not idiopathic generalized, epilepsy. Our findings were reproduced across individual sites and single patients and were robust across different analytical methods. Through worldwide collaboration in ENIGMA-Epilepsy, we provided deeper insights into the macroscale features that shape the pathophysiology of common epilepsies.

12.
Brain ; 143(8): 2454-2473, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814957

RESUMO

The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across 'all epilepsies' lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research.


Assuntos
Encéfalo/patologia , Síndromes Epilépticas/patologia , Substância Branca/patologia , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade
13.
Science ; 367(6484)2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32193296

RESUMO

The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.


Assuntos
Córtex Cerebral/anatomia & histologia , Variação Genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Mapeamento Encefálico , Cognição , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Imageamento por Ressonância Magnética , Tamanho do Órgão/genética , Doença de Parkinson/genética
14.
Nat Genet ; 51(11): 1624-1636, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31636452

RESUMO

Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Drosophila melanogaster/metabolismo , Variação Genética , Estudo de Associação Genômica Ampla , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Adulto , Idoso , Animais , Estudos de Coortes , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Tamanho do Órgão
15.
Neurology ; 92(4): e351-e358, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30587513

RESUMO

OBJECTIVE: To examine cerebral cortex thickness in asymptomatic first-degree relatives of patients with mesial temporal lobe epilepsy (MTLE). METHODS: We investigated 127 asymptomatic first-degree relatives of patients with MTLE due to hippocampal sclerosis (HS) (mean age ± SD = 39.4 ± 13 years) and 203 healthy control individuals (mean age ± SD = 36.0 ± 11 years). Participants underwent a comprehensive clinical evaluation and structural brain MRI at 3 study sites. Images were processed simultaneously at each site using a surface-based morphometry method to quantify global brain measures, hippocampal volumes, and cerebral cortical thickness. Differences in brain measures between relatives of patients and controls were examined using generalized models, while controlling for relevant covariates, including age and sex. RESULTS: None of the asymptomatic first-degree relatives of MTLE + HS patients showed evidence of HS on qualitative image assessments. Compared to the healthy controls, the asymptomatic relatives of patients displayed no significant differences in intracranial volume, average hemispheric surface area, or hippocampal volume. Similarly, no significant cerebral cortical thinning was identified in the relatives of patients. This was consistent across the 3 cohorts. CONCLUSION: Lack of cortical thickness changes in the asymptomatic relatives of patients indicates that the previously characterized MTLE + HS-related cortical thinning is not heritable, and is likely driven by disease-related factors. This finding therefore argues for early and aggressive intervention in patients with medically intractable epilepsy.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Família , Adulto , Estudos de Coortes , Epilepsia do Lobo Temporal/etiologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose/complicações , Estatísticas não Paramétricas
16.
Ann Neurol ; 84(4): 576-587, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30179274

RESUMO

OBJECTIVE: To examine the relationship between carotid atherosclerosis and cerebral cortical thickness and investigate whether cortical thickness mediates the association between carotid atheroma and relative cognitive decline. METHODS: We assessed 554 community-dwelling subjects (male/female: 296/258) from the Lothian Birth Cohort 1936 who underwent brain magnetic resonance imaging and carotid Doppler ultrasound studies at age 73 years. The relationship between carotid atherosclerosis markers (internal carotid artery stenosis, intima-media thickness, velocity, pulsatility, and resistivity indexes) and vertex-wide cerebral cortical thickness was examined cross-sectionally, controlling for gender, extensive vascular risk factors (VRFs), and intelligence quotient at age 11 (IQ-11). We also determined the association between carotid stenosis and a composite measure of fluid intelligence at age 73 years. A mediation model was applied to examine whether cortical thickness mediated the relationship between carotid stenosis and cognitive function. RESULTS: A widespread negative association was identified between carotid stenosis (median = 15%) and cerebral cortical thickness at age 73 years, independent of the side of carotid stenosis, other carotid measures, VRFs, and IQ-11. This association increased in an almost dose-response relationship from mild to severe degrees of carotid stenosis, across the anterior and posterior circulation territories. A negative association was also noted between carotid stenosis and fluid intelligence (standardized beta coefficient = -0.151, p = 0.001), which appeared partly (approximately 22%) mediated by carotid stenosis-related thinning of the cerebral cortex. INTERPRETATION: The findings suggest that carotid stenosis represents a marker of processes that accelerate aging of the cerebral cortex and cognition that is in part independent of measurable VRFs. Cortical thinning within the anterior and posterior circulation territories partially mediated the relationship between carotid atheroma and fluid intelligence. Ann Neurol 2018;84:576-587.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/psicologia , Artéria Carótida Interna/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Testes de Estado Mental e Demência , Idoso , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Tamanho do Órgão , Escócia/epidemiologia , Ultrassonografia Doppler/tendências
17.
Brain ; 141(2): 391-408, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365066

RESUMO

Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = -0.24 to -0.73; P < 1.49 × 10-4), and lower thickness in the precentral gyri bilaterally (d = -0.34 to -0.52; P < 4.31 × 10-6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = -1.73 to -1.91, P < 1.4 × 10-19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = -0.36 to -0.52; P < 1.49 × 10-4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = -0.29 to -0.54; P < 1.49 × 10-4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = -0.27 to -0.51; P < 1.49 × 10-4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < -0.0018; P < 1.49 × 10-4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Epilepsia/patologia , Adulto , Encéfalo/patologia , Correlação de Dados , Estudos Transversais , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Cooperação Internacional , Imageamento por Ressonância Magnética , Masculino , Metanálise como Assunto
18.
Nat Commun ; 8: 13624, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098162

RESUMO

The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg=-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.


Assuntos
Hipocampo/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Criança , Estudos de Coortes , Dipeptidil Peptidase 4/genética , Feminino , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glicoproteínas/genética , Humanos , Masculino , Metionina Sulfóxido Redutases/genética , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Tamanho do Órgão , Proteínas Serina-Treonina Quinases/genética , Adulto Jovem
19.
Nat Neurosci ; 19(12): 1569-1582, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27694991

RESUMO

Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.


Assuntos
Cognição/fisiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Proteína Oncogênica v-akt/genética , Doença de Parkinson/genética , Fenótipo , Fosfatidilinositol 3-Quinases/genética , População Branca
20.
Neuroimage Clin ; 12: 526-534, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672556

RESUMO

Over the last decade, the field of imaging genomics has combined high-throughput genotype data with quantitative magnetic resonance imaging (QMRI) measures to identify genes associated with brain structure, cognition, and several brain-related disorders. Despite its successful application in different psychiatric and neurological disorders, the field has yet to be advanced in epilepsy. In this article we examine the relevance of imaging genomics for future genetic studies in epilepsy from three perspectives. First, we discuss prior genome-wide genetic mapping efforts in epilepsy, considering the possibility that some studies may have been constrained by inherent theoretical and methodological limitations of the genome-wide association study (GWAS) method. Second, we offer a brief overview of the imaging genomics paradigm, from its original inception, to its role in the discovery of important risk genes in a number of brain-related disorders, and its successful application in large-scale multinational research networks. Third, we provide a comprehensive review of past studies that have explored the eligibility of brain QMRI traits as endophenotypes for epilepsy. While the breadth of studies exploring QMRI-derived endophenotypes in epilepsy remains narrow, robust syndrome-specific neuroanatomical QMRI traits have the potential to serve as accessible and relevant intermediate phenotypes for future genetic mapping efforts in epilepsy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...