RESUMO
Novel structured lipids (SLs) enriched with medium-and long-chain triacylglycerols (MLCTs) were synthesized to combine the benefits of both arachidonic acid and medium-chain fatty acids; however, they are susceptible to oxidative degradation. In this work, the influences of the partial replacement of whey protein isolate (WPI) as the primary wall material by prebiotic carbohydrates, such as maltodextrin (MD) and inulin (IN) as the secondary wall materials on the physicochemical characteristics and oxidative stability of the spray-dried MLCTs-rich SLs microcapsules were investigated. The highest values of viscosity and zeta-potential were achieved by the WPI/IN (1:1) emulsions. Size distributions of all the emulsions were mono modal and became bimodal after microencapsulation process. The microcapsules prepared with WPI/IN (1:1) had the lowest lightness and the highest yellowness values. The partial replacement treatments increased the solubility and reduced the moisture content of the produced microcapsules. The partial replacement of WPI by IN significantly enhanced the encapsulation efficiency (89.10⯱â¯1.03%), wettability properties (205⯱â¯10.61â¯S), and decreased the incidence of surface oil on the microcapsules. The free oil content was noted as 5.73⯱â¯0.05, 3.83⯱â¯0.01, and 2.40⯱â¯0.03% for the microcapsules produced using WPI, WPI/MD (1:1), and WPI/IN (1:1), respectively. Larger microcapsules and fairer flowing properties were achieved in the powders produced with only WPI. The partial replacement of WPI by IN provided the best oxidative stability of the microencapsulated MLCTs-rich SLs. The results revealed that MD and IN with WPI together, particularly IN proved to be a good substitute secondary wall material for spray-dried MLCTs-rich SLs, therefore suggesting its usefulness in functional food applications.
Assuntos
Cápsulas/química , Dessecação/métodos , Lipídeos/química , Triglicerídeos/química , Proteínas do Soro do Leite/química , Ácidos Araquidônicos , Carboidratos , Fenômenos Químicos , Emulsões/química , Alimento Funcional , Inulina , Proteínas do Leite/química , Oxirredução , Tamanho da Partícula , Polissacarídeos , Pós , Prebióticos , Viscosidade , Proteínas do Soro do Leite/isolamento & purificaçãoRESUMO
Egg phospholipids (PLs) are currently the products of greatest commercial interest with major area of importance in various fields. Therefore, in this study, duck, hen and quail egg yolk PLs were isolated by solvent extraction with chilled acetone precipitation, and subsequently separated and identified by using ultra-performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Egg PLs were separated on hydrophilic interaction liquid chromatography (HILIC) with ethylene bridged hybrid (BEH) column by gradient elution using acetonitrile/ammonium formate as a mobile phase, and detected by mass spectrometry (MS) under electrospray ionization in positive and negative ion mode. Structural characterizations of 57 molecular species of egg yolk PLs were identified based on MS/MS fragment ion information and elemental composition in MassLynx 4.1 software. The obtained results showed that phosphatidylcholine (16:0-18:1), phosphatidylethanolamine (18:0-20:4), phosphatidylinositol (18:0-18:2), phosphatidylserine (18:0-18:2), sphingomyelin (d18:1/16:0) and lysophosphatidylcholine (16:0) were the predominant species among the different classes of egg yolk phospholipids.