Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(19): 21450-21458, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764640

RESUMO

This study explored the synergistic potential of photoelectrochemical water splitting through bifunctional Co3O4/g-C3N4 heterostructures. This novel approach merged solar panel technology with electrochemical cell technology, obviating the need for external voltage from batteries. Scanning electron microscopy and X-ray diffraction were utilized to confirm the surface morphology and crystal structure of fabricated nanocomposites; Co3O4, Co3O4/g-C3N4, and Co3O4/Cg-C3N4. The incorporation of carbon into g-C3N4 resulted in improved catalytic activity and charge transport properties during the visible light-driven hydrogen evolution reaction and oxygen evolution reaction. Optical properties were examined using UV-visible spectroscopy, revealing a maximum absorption edge at 650 nm corresponding to a band gap of 1.31 eV for Co3O4/Cg-C3N4 resulting in enhanced light absorption. Among the three fabricated electrodes, Co3O4/Cg-C3N4 exhibited a significantly lower overpotential of 30 mV and a minimum Tafel slope of 112 mV/dec This enhanced photoelectrochemical efficiency was found due to the established Z scheme heterojunction between Co3O4 and gC3N4. This heterojunction reduced the recombination of photogenerated electron-hole pairs and thus promoted charge separation by extending visible light absorption range chronoamperometric measurements confirmed the steady current flow over time under constant potential from the solar cell, and thus it provided the effective utilization of bifunctional Co3O4/g-C3N4 heterostructures for efficient solar-driven water splitting.

2.
Mol Divers ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470555

RESUMO

Globally, lung cancer is a significant public health concern due to its role as the leading cause of cancer-related mortalities. The promising target of EGFR for lung cancer treatment has been identified, providing a potential avenue for more effective therapies. The purpose of the study was to design a library of 1843 coumarin-1,2,3-triazole hybrids and screen them based on a designed pharmacophore to identify potential inhibitors targeting EGFR in lung cancer with minimum or no side effects. Pharmacophore-based screening was carried out and 60 hits were obtained. To gain a better understanding of the binding interactions between the compounds and the targeted receptor, molecular docking was conducted on the 60 screened compounds. In-silico ADME and toxicity studies were also conducted to assess the drug-likeness and safety of the identified compounds. The results indicated that coumarin-1,2,3-triazole hybrids COUM-0849, COUM-0935, COUM-0414, COUM-1335, COUM-0276, and COUM-0484 exhibit dock score of - 10.2, - 10.2, - 10.1, - 10.1, - 10, - 10 while reference molecule - 7.9 kcal/mol for EGFR (PDB ID: 4HJO) respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of EGFR, indicating their potential as inhibitors. The in-silico ADME and toxicity studies showed that the compounds had favorable drug-likeness properties and low toxicity, further supporting their potential as therapeutic agents. Finally, we performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of coumarin-1,2,3-triazole hybrids as promising EGFR inhibitors for the management of lung cancer.

3.
PLoS One ; 18(11): e0294511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37972144

RESUMO

Cardiovascular disorders are the world's major cause of death nowadays. To treat cardiovascular diseases especially coronary artery diseases and hypertension, researchers found potential ROCK2 (Rho-associated coiled-coil-containing protein kinase 2) target due to its substantial role in NO-cGMP and RhoA/ROCK pathway. Available drugs for ROCK2 are less effective and some of them depict side effects. Therefore, a set of novel compounds were screened that can potentially inhibit the activity of ROCK2 and help to treat cardiovascular diseases by employing In-silico techniques. In this study, we undertook ligand based virtual screening of 50 million compound's library, to that purpose shape and features (contain functional groups) based pharmacophore query was modelled and validated by Area Under Curve graph (AUC). 2000 best hits were screened for Lipinski's rule of 5 compliance. Subsequently, these selected compounds were docked into the binding site of ROCK2 to gain insights into the interactions between hit compounds and the target protein. Based on binding affinity and RMSD scores, a final cohort of 15 compounds were chosen which were further refined by pharmacokinetics, ADMET and bioactivity scores. 2 potential hits were screened using density functional theory, revealing remarkable biological and chemical activity. Potential inhibitors (F847-0007 and 9543495) underwent rigorous examination through MD Simulations and MMGBSA analysis, elucidating their stability and strong binding affinities. Results of current study unveil the potential of identified novel hits as promising lead compounds for ROCK2 associated with cardiovascular diseases. These findings will further investigate via In-vitro and In-vivo studies to develop novel druglike molecules against ROCK2.


Assuntos
Doenças Cardiovasculares , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Doenças Cardiovasculares/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Sítios de Ligação , Quinases Associadas a rho
4.
J Biomol Struct Dyn ; : 1-11, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705295

RESUMO

One of the most prevalent ailments is kidney disease. Effective therapies for chronic renal disease are hard to come by. As a result, there is significant clinical and social interest to predict and develop novel compounds to treat renal disorders. So, specific natural products have been employed in this study because they have protective effects against kidney diseases. When taken orally, natural products can help protect against or lessen the severity of the kidney damage caused by high fructose intake, a high-fat diet, and both Type I and Type 2 diabetes. Reduced podocyte injury, a contributor to albuminuria in diabetic nephropathy, reduces renal endothelial barrier function disruption due to hyperglycemia, as well as urinary microalbumin excretion and glomerular hyperfiltration. Multiple natural products have been shown to protect the kidneys from nephrotoxic chemicals such as LPS, gentamycin, alcohol, nicotine, lead, and cadmium, all of which can persuade acute kidney injury (AKI) or chronic kidney disease (CKD). Natural compounds inhibit regulatory enzymes for controlling inflammation-related diseases. For this, use computational methods such as drug design to identify novel flavonoid compounds against kidney diseases. Drug design via computational methods gaining admiration as a swift and effective technique to identify lead compounds in a shorter time at a low cost. In this in-silico study, we screened The Natural Product Atlas based on a structure-based pharmacophore query. Top hits were analyzed for ADMET analysis followed by molecular docking and docking validation. Finally, the lead compound was simulated for a period of 200 ns and trajectories were studied for stability. We found that NPA024823 showed promising binding and stability with the AIM2. This research work aims to predict novel anti-inflammatory compounds against kidney diseases to inhibit kidney inflammasome by targeting the AIM2 protein. So, in initial preclinical research, there will be lower failure rates that demonstrate safety profiles against predicted compounds.Communicated by Ramaswamy H. Sarma.

5.
In Silico Pharmacol ; 11(1): 20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575679

RESUMO

Lung cancer is one of the most common and deadly types of cancer worldwide, and the epidermal growth factor receptor (EGFR) has emerged as a promising therapeutic target for the treatment of this disease. In this study, we designed a library of 1840 benzofuran-1,2,3-triazole hybrids and conducted pharmacophore-based screening to identify potential EGFR inhibitors. The 20 identified compounds were further evaluated using molecular docking and molecular dynamics simulations to understand their binding interactions with the EGFR receptor. In-silico ADME and toxicity studies were also performed to assess their drug-likeness and safety profiles. The results of this study showed the benzofuran-1,2,3-triazole hybrids BENZ-0454, BENZ-0143, BENZ-1292, BENZ-0335, BENZ-0332, and BENZ-1070 dock score of - 10.2, - 10, - 9.9, - 9.8, - 9.7, - 9.6, while reference molecule - 7.9 kcal/mol for EGFR (PDB ID: 4HJO) respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of the receptor, indicating their potential as inhibitors. The in-silico ADME and toxicity studies suggested that the compounds had good pharmacokinetic and safety profiles, further supporting their potential as therapeutic agents. Finally, performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of benzofuran-1,2,3-triazole hybrids as promising EGFR inhibitors for the treatment of lung cancer. Overall, this study provides a valuable starting point for the development of novel EGFR inhibitors with improved efficacy and safety profiles. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00157-1.

6.
J Biomol Struct Dyn ; : 1-23, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646177

RESUMO

Lung cancer is a complex and heterogeneous disease, which has been associated with various molecular alterations, including the overexpression and mutations of the epidermal growth factor receptor (EGFR). In this study, designed a library of 1843 benzimidazole-1,2,3-triazole hybrids and carried out pharmacophore-based screening to identify potential EGFR inhibitors. The 164 compounds were further evaluated using molecular docking and molecular dynamics simulations to understand the binding interactions between the compounds and the receptor. In-si-lico ADME and toxicity studies were also conducted to assess the drug-likeness and safety of the identified compounds. The results of this study indicate that benzimidazole-1,2,3-triazole hybrids BENZI-0660, BENZI-0125, BENZI-0279, BENZI-0415, BENZI-0437, and BENZI-1110 exhibit dock scores of -9.7, -9.6, -9.6, -9.6, -9.6, -9.6 while referencing molecule -7.9 kcal/mol for EGFR (PDB ID: 4HJO), respectively. The molecular docking and molecular dynamics simulations revealed that the identified compounds formed stable interactions with the active site of EGFR, indicating their potential as inhibitors. The in-silico ADME and toxicity studies showed that the compounds had favorable drug-likeness properties and low toxicity, further supporting their potential as therapeutic agents. Finally, performed DFT studies on the best-selected ligands to gain further insights into their electronic properties. The findings of this study provide important insights into the potential of benzimidazole-1,2,3-triazole hybrids as promising EGFR inhibitors for the treatment of lung cancer. This research opens up a new avenue for the discovery and development of potent and selective EGFR inhibitors for the treatment of lung cancer.Communicated by Ramaswamy H. Sarma.

7.
Brain Spine ; 3: 101725, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383460

RESUMO

Introduction: The effect of chronic steroid therapy on postoperative outcomes after craniotomy for tumor resection remains understudied. Research question: This study aimed to fill this gap and to identify risk factors of postoperative morbidity and mortality among patients on chronic steroid use undergoing craniotomy for tumor resection. Materials and methods: Data from the American College of Surgeons National Surgical Quality Improvement Program were used. Patients who underwent craniotomy for tumor resection between 2011 and 2019 were included. Perioperative characteristics and complications were compared among patients with and without chronic steroid therapy, defined as steroid use for at least 10 days. Multivariable regression analyses were conducted to assess the impact of steroid therapy on postoperative outcomes. Subgroup analyses involving patients on steroid therapy were conducted to explore risk factors of postoperative morbidity and mortality. Results: Of 27,037 patients, 16.2% were on steroid therapy. On regression analyses, steroid use was significantly associated with any postoperative complication, infectious complication, urinary tract infection, septic shock, wound dehiscence, pneumonia, non-infectious, pulmonary, and thromboembolic complications, cardiac arrest, blood transfusion, unplanned reoperation, readmission, and mortality. On subgroup analysis, risk factors for postoperative morbidity and mortality among patients on steroid therapy included older age, higher American Society of Anesthesiology physical status, functional dependence, pulmonary and cardiovascular comorbidities, anemia, dirty/infected wounds, prolonged operative time, disseminated cancer, and a diagnosis of meningioma. Discussion and conclusion: Preoperative brain tumor patients on steroids for 10 or more days are at a relatively high risk of postoperative complications. We recommend a judicious use of steroids in brain tumor patients, both in terms of dosage and duration of treatment.

8.
PLoS One ; 18(5): e0285965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200367

RESUMO

Kidney disorders are among the most common diseases and there is a scarcity of effective treatments for chronic kidney disease. There has been a progressive improvement in specific flavonoids for protective effects against kidney diseases. Flavonoids inhibit the regulatory enzymes to control inflammation-related diseases. In the present study, a hybrid approach of molecular docking analyses and molecular dynamic simulation was followed by principal component analyses and a dynamics cross-correlation matrix. In the present study, the top-ranked five flavonoids were reported, and the maximum binding affinity was observed against AIM2. Molecular docking analyses revealed that Glu_186, Phe_187, Lys_245, Glu_248, Ile_263, and Asn_265 are potent residues against AIM2 for ligand-receptor interactions. Extensive in silico analyses suggested that procyanidin is a potential molecule against AIM2. Moreover, the site-directed mutagenesis for the reported interacting residues of AIM2 could be important for further in vitro analyses. The observed novel results based on extensive computational analyses may be significant for potential drug design against renal disorders by targeting AIM2.


Assuntos
Flavonoides , Nefropatias , Humanos , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Flavonoides/metabolismo , Simulação de Dinâmica Molecular , Desenho de Fármacos , Proteínas de Ligação a DNA/metabolismo
9.
J Biomol Struct Dyn ; 41(21): 11353-11372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114510

RESUMO

Epidermal growth factor receptor (EGFR) enhances lung cancer development, due to their inability to permeate the cell membrane, secreted growth factors work through specialized signal transduction pathways. The purpose of this study is to find out a novel anticancer agent that inhibits EGFR and reduces the chances of lung cancer. A series of triazole-substituted quinazoline hybrid compounds were designed by Chemdraw software and docked against five different crystallographic EGFR tyrosine kinase domain (TKD). For docking and visualization PyRx, Autodock vina, and Discovery studio visualizer were used. Molecule-14, Molecule-16, Molecule-19, Molecule-20, and Molecule-38 showed significant affinity but Molecule-19 showed excellent binding affinity (-12.4 kcal/mol) with crystallographic EGFR tyrosine kinase. The superimposition of the co-crystalized ligand with the hit compound shows similar conformation at the active site of EGFR (PDB ID: 4HJO) indicating excellent coupling and pharmaceutically active. The hit compound showed a good bioavailability score (0.55) with no sign of carcinogenesis, mutagenesis, or reproductive toxicity properties. MD simulation and MMGBSA represent good stability and binding free energy demonstrating that the hit (Molecule-19) may be used as a lead compound. Molecule-19 also showed good ADME properties, bioavailability scores, and synthetic accessibility with fewer signs of toxicity. It was observed that Molecule-19 may be a novel and potential inhibitor against EGFR with fewer side effects than the reference molecule. Additionally, the molecular dynamics simulation revealed the stable nature of protein-ligand interaction and provided information about the amino acid residues involved in binding. Overall, this study led to the identification of potential EGFR inhibitors with favorable pharmacokinetic properties. We believe that the outcome of this study can help to develop more potent drug-like molecules to tackle human lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Quinazolinas/química , Ligantes , Inibidores de Proteínas Quinases/química , Simulação de Acoplamento Molecular , Receptores ErbB/metabolismo , Simulação de Dinâmica Molecular
10.
Biomedicines ; 11(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36979773

RESUMO

The pandemic outbreak of human coronavirus is a global health concern that affects people of all ages and genders, but there is currently still no effective, approved and potential drug against human coronavirus, as many other coronavirus vaccines have serious side effects while the development of small antiviral inhibitors has gained tremendous attention. For this research, HE was used as a therapeutic target, as the spike protein displays a high binding affinity for both host ACE2 and viral HE glycoprotein. Molecular docking, pharmacophore modelling and virtual screening of 38,000 natural compounds were employed to find out the best natural inhibitor against human coronaviruses with more efficiency and fewer side effects and further evaluated via MD simulation, PCA, DCCR and MMGBSA. The lead compound 'Calceolarioside B' was identified on the basis of pharmacophoric features which depict favorable binding (ΔGbind -37.6799 kcal/mol) with the HE(5N11) receptor that describes positive correlation movements in active site residues with better stability, a robust H-bond network, compactness and reliable ADMET properties. The Fraxinus sieboldiana Blume plant containing the Calceolarioside B compound could be used as a potential inhibitor that shows a higher efficacy and potency with fewer side effects. This research work will aid investigators in the testing and identification of chemicals that are effective and useful against human coronavirus.

11.
Life (Basel) ; 11(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494233

RESUMO

(1) Background: Enterococcus faecium DO is an environmental microbe, which is a mesophilic, facultative, Gram-positive, and multiple habitat microorganism. Enterococcus faecium DO is responsible for many diseases in human. The fight against infectious diseases is confronted by the development of multiple drug resistance in E. faecium. The focus of this research work is to identify a novel compound against this pathogen by using bioinformatics tools and technology. (2) Methods: We screened the proteome (accession No. PRJNA55353) information from the genome database of the National Centre for Biotechnology Information (NCBI) and suggested a potential drug target. I-TASSER was used to predict the three-dimensional structure of the protein, and the structure was optimized and minimized by different tools. PubChem and ChEBI were used to retrieve the inhibitors. Pharmacophore modeling and virtual screening were performed to identify novel compounds. Binding interactions of compounds with target protein were checked using LigPlot. pkCSM, SwissADME, and ProTox-II were used for adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. (3) Results: Novel selected compounds have improved absorption and have better ADMET properties. Based on our results, the chemically identified inhibitor ZINC48942 targeted the receptor that can inhibit the activity of infection in E. faecium. This research work will be beneficial for the scientific community and could aid in the design of a new drug against E. faecium infections. (4) Conclusions: It was observed that novel compounds are potential inhibitors with more efficacy and fewer side effects. This research work will help researchers in testing and identification of these chemicals useful against E. faecium.

12.
Health Promot Int ; 33(4): 561-571, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082373

RESUMO

Interpretive nutrition labels provide simplified nutrient-specific text and/or symbols on the front of pre-packaged foods, to encourage and enable consumers to make healthier choices. This type of labelling has been proposed as part of a comprehensive policy response to the global epidemic of non-communicable diseases. However, regulation of nutrition labelling falls under the remit of not just the health sector but also trade. Specific Trade Concerns have been raised at the World Trade Organization's Technical Barriers to Trade Committee regarding interpretive nutrition labelling initiatives in Thailand, Chile, Indonesia, Peru and Ecuador. This paper presents an analysis of the discussions of these concerns. Although nutrition labelling was identified as a legitimate policy objective, queries were raised regarding the justification of the specific labelling measures proposed, and the scientific evidence for effectiveness of such measures. Concerns were also raised regarding the consistency of the measures with international standards. Drawing on policy learning theory, we identified four lessons for public health policy makers, including: strategic framing of nutrition labelling policy objectives; pro-active policy engagement between trade and health to identify potential trade issues; identifying ways to minimize potential 'practical' trade concerns; and engagement with the Codex Alimentarius Commission to develop international guidance on interpretative labelling. This analysis indicates that while there is potential for trade sector concerns to stifle innovation in nutrition labelling policy, care in how interpretive nutrition labelling measures are crafted in light of trade commitments can minimize such a risk and help ensure that trade policy is coherent with nutrition action.


Assuntos
Rotulagem de Alimentos/normas , Política Nutricional , Indústria Alimentícia/normas , Promoção da Saúde , Humanos , Saúde Pública
13.
Ann Med Surg (Lond) ; 17: 7-13, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28377802

RESUMO

OBJECTIVE: Recognition of Non alcoholic fatty liver disease (NAFLD) and metabolic syndrome in patients with gallstones undergoing laparoscopic or open cholecystectomy, along with it we will also study the life style of patients with gall stones. BACKGROUND: Patients with gallstones have associated NAFLD, with concurrent metabolic syndrome and these ailments share similar factors for example obesity, hypertriglyceridemia and diabetes mellitus. Factors like body mass index, gender, raised lipid levels, use of contraceptives and alcohol and having diabetes, physical inactiveness, multiparous women, water with excessive iron content, metabolic syndrome, and NAFLD are accountable factors for gallstones formation. METHODOLOGY: This was a case series done at Surgical Unit 1 of Civil Hospital Karachi. Selective samples of 88 patients were included. Duration was 3 months. We included both sexes with ultrasound proof of gall stone irrespective of cholecystitis. Excluded patients with history of seropositive viral hepatitis, autoimmune and wilson's disease. As these conditions can act as a confounder to our variables. RESULTS: Nafld was present in 62.5%(n = 55) while 28.4% (n = 25) had metabolic syndrome. 26.94% had BMI less than 18, 32.12 had BMI between 18 and 25 and majority had BMI greater than 25 i.e in 40.93%. Of all 46.6% had a family history of cholelithiasis. Gallstone patients with NAFLD reported about their first degree relative being suffering from cholelithiasis at a significant p-value of 0.034 while this was not significant in cases of metabolic syndrome and the p -value was 0.190. CONCLUSION: We found association of metabolic syndrome with gallstones and NAFLD. Non alcoholic fatty liver was highly prevalent in our study subjects. Huge percentage of first degree relatives of gall stone patients had gallstones and this relation was more pronounced patients who had associated NAFLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...