Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(9): e0291077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37669304

RESUMO

Cooperative spectrum sensing (CSS) involves multiple secondary users (SUs) reporting primary user (PU) channel sensing states to the fusion center (FC). However, the high overheads associated with multi-user CSS impose power limitations that limit its usefulness in unmanned aerial vehicle (UAV) networks. To address this challenge, we propose a virtual CSS, where a single UAV conducts CSS while following a circular flight trajectory in the air. The novelty of our approach is presenting a working frame structure for the UAV flight, including sensing and data transmission periods with further division of the sensing time into mini-sensing slots. In the virtual CSS, UAV performs local sensing decisions in each mini-slot and accumulates them for a final decision. The proposed virtual CSS scheme exploits sequential decision fusion (SDF), which sequentially adds individual mini-slot decisions. Additionally, we leverage machine learning (ML), employing AdaBoost ensembling classifier (ENC), to inspect flight conditions and reconfigure mini-slot periods dynamically for both traditional decision fusion (TDF) and our proposed SDF schemes. Furthermore, we identify an optimal decision threshold (ODT) for the proposed SDF, enabling the comparison of sequential results with an adjustable threshold through majority voting. This novel approach results in energy efficiency and improved throughput for virtual CSS using SDF, surpassing the performance of TDF, which relies on collecting entire mini-slot reports for its final decision. Simulation results demonstrate the effectiveness of the proposed SDF following the ENCODT (SDF-ENCODT) scheme compared to existing techniques from the literature. We explore varying levels of UAV flight velocities, moving radius, detection probability demand, and channel signal-to-noise ratio (SNR), reinforcing the significance of our contribution. Our research highlights the motivation to address spectrum scarcity in UAV communication by proposing an innovative virtual CSS scheme based on SDF. The proposed approach enhances spectrum utilization, overcomes power limitations, and substantially improves CSS for UAV networks.


Assuntos
Comunicação , Dispositivos Aéreos não Tripulados , Simulação por Computador , Hidrolases , Cognição
2.
Biochem Cell Biol ; 101(6): 562-573, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639730

RESUMO

Cerebral microbleeds (CMBs) in the brain are the essential indicators of critical brain disorders such as dementia and ischemic stroke. Generally, CMBs are detected manually by experts, which is an exhaustive task with limited productivity. Since CMBs have complex morphological nature, manual detection is prone to errors. This paper presents a machine learning-based automated CMB detection technique in the brain susceptibility-weighted imaging (SWI) scans based on statistical feature extraction and classification. The proposed method consists of three steps: (1) removal of the skull and extraction of the brain; (2) thresholding for the extraction of initial candidates; and (3) extracting features and applying classification models such as random forest and naïve Bayes classifiers for the detection of true positive CMBs. The proposed technique is validated on a dataset consisting of 20 subjects. The dataset is divided into training data that consist of 14 subjects with 104 microbleeds and testing data that consist of 6 subjects with 63 microbleeds. We were able to achieve 85.7% sensitivity using the random forest classifier with 4.2 false positives per CMB, and the naïve Bayes classifier achieved 90.5% sensitivity with 5.5 false positives per CMB. The proposed technique outperformed many state-of-the-art methods proposed in previous studies.


Assuntos
Hemorragia Cerebral , Interpretação de Imagem Assistida por Computador , Humanos , Hemorragia Cerebral/diagnóstico por imagem , Teorema de Bayes , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
3.
Sensors (Basel) ; 22(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36146190

RESUMO

In vehicular ad hoc networks (VANETs), helpful information dissemination establishes the foundation of communication. One of the significant difficulties in developing a successful dissemination system for VANETs is avoiding traffic fatalities. Another essential success metric is the transfer of reliable and secure warning messages through the shortest path, particularly on highways with high mobility. Clustering vehicles is a general solution to these challenges, as it allows warning alerts to be re-broadcast to nearby clusters by fewer vehicles. Hence, trustworthy cluster head (CH) selections are critical to decreasing the number of retransmissions. In this context, we suggest a clustering technique called Optimal Path Routing Protocol for Warning Messages (OPRP) for dissemination in highway VANETs. OPRP relies on mobility measured to reinforce cluster creation, evade transmission overhead, and sustain message authenticity in a high mobility environment. Moreover, we consider communication between the cluster heads to reduce the number of transmissions. Furthermore, the cluster head is chosen using the median technique based on an odd or even number of vehicles for a stable and lengthy cluster life. By altering traffic densities and speeds, OPRP is compared with prominent schemes. Simulation results revealed that OPRP offers enhanced throughput, end-to-end delay, maximizing packet delivery ratio, and message validity.

4.
Sensors (Basel) ; 22(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35591281

RESUMO

The software-defined networking (SDN) standard decouples the data and control planes. SDN is used in the Internet of Things (IoT) due to its programmability, central view and deployment of innovative protocols, and is known as SD-IoT. However, in SD-IoT, controller selection has never been studied. Controllers control the network and react to dynamic changes in SD-IoT. As sensors communicate frequently with the controller in SD-IoT, there is a degradation in performance with scalability and an increase in flow requests. Hence, the controller performance and selection are critical for SD-IoT. However, one controller's support for certain functions is high while another's is poor. There are various SD-IoT controllers, and choosing the best one might be a multi-criteria choice. An analytical network decision making process- (ANDP) based technique is employed here to identify feature-based optimal controllers in SD-IoT. The experimental analysis quantifies the high-weight controller from the feature-based comparison. An ANDP-based feature-based controller selection strategy is suggested, which selects the controller with the best feature set first, before comparing performance. This paper's main contribution is to evaluate the ANDP for SD-IoT controller selection based on its features and performance validation in the SD-IoT environment. The simulation results suggest that the proposed controller outperforms the controller selected with previous schemes. Choosing an optimal controller in SD-IoT reduces the delay in both normal and heavy traffic scenarios. The suggested controller also increases throughput while using the central processing unit (CPU) efficiently and reduces the recovery latency in case of failures in the network.

5.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458976

RESUMO

The Software-Defined Networking (SDN) paradigm has transferred network intelligence from network devices to a centralized controller. Controllers are distributed in a network to eliminate a single point of failure (SPOF) and improve reliability and balance load. In Software-Defined Internet of Things (SD-IoT), sensors exchange data with a controller on a regular basis. If the controllers are not appropriately located in SD-IoT, the E2E latency between the switches, to which the sensors are connected, and the controller increases. However, examining the placement of controllers in relation to the whole network is not an efficient technique since applying the objective function to the entire network is a difficult operation. As a result, segmenting the network into clusters improves the efficiency with which switches are assigned to the controller. As a result, in this research, we offer an effective clustering strategy for controller placement in SDN that leverages the Analytical Network Process (ANP), a multi-criteria decision-making (MCDM) scheme. The simulation results demonstrated on real Internet topologies suggest that our proposed method outperforms the standard k-means approach in terms of E2E delay, controller-to-controller (C2C) delay, the fair allocation of switches in the network, and the communication overhead.

6.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062491

RESUMO

Due to the value and importance of patient health records (PHR), security is the most critical feature of encryption over the Internet. Users that perform keyword searches to gain access to the PHR stored in the database are more susceptible to security risks. Although a blockchain-based healthcare system can guarantee security, present schemes have several flaws. Existing techniques have concentrated exclusively on data storage and have utilized blockchain as a storage database. In this research, we developed a unique deep-learning-based secure search-able blockchain as a distributed database using homomorphic encryption to enable users to securely access data via search. Our suggested study will increasingly include secure key revocation and update policies. An IoT dataset was used in this research to evaluate our suggested access control strategies and compare them to benchmark models. The proposed algorithms are implemented using smart contracts in the hyperledger tool. The suggested strategy is evaluated in comparison to existing ones. Our suggested approach significantly improves security, anonymity, and monitoring of user behavior, resulting in a more efficient blockchain-based IoT system as compared to benchmark models.


Assuntos
Blockchain , Aprendizado Profundo , Registros de Saúde Pessoal , Gerenciamento de Dados , Atenção à Saúde , Humanos
7.
PLoS One ; 15(9): e0238423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32877456

RESUMO

In this paper we introduce a real Pashtu handwritten numerals dataset (PHND) having 50,000 scanned images and make publicly available for research and scientific use. Although more than fifty million people in the world use this language for written and oral communication, no significant efforts are devoted to the Pashtu Optical Character Recognition (POCR). We present a new approach for Pahstu handwritten numerals recognition (PHNR) based on deep neural networks. We train Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) on high-frequency numerals for feature extraction and classification. We evaluated the performance of the proposed algorithm on the newly introduced Pashtu handwritten numerals database PHND and Bangla language number database CMATERDB 3.1.1. We obtained best recognition rate of 98.00% and 98.64% on PHND and CMATERDB 3.1.1. respectively.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Redação/normas , Adulto , Idoso , Algoritmos , Aprendizado Profundo , Feminino , Escrita Manual , Humanos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação
8.
Sensors (Basel) ; 20(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244668

RESUMO

Internet of Things (IoT) is a promising technology that uses wireless sensor networks to enable data collection, monitoring, and transmission from the physical devices to the Internet. Due to its potential large scale usage, efficient routing and Medium Access Control (MAC) techniques are vital to meet various application requirements. Most of the IoT applications need low data rate and low powered wireless transmissions and IEEE 802.15.4 standard is mostly used in this regard which offers superframe structure at the MAC layer. However, for IoT applications where nodes have adaptive data traffic, the standard has some limitations such as bandwidth wastage and latency. In this paper, a new superframe structure is proposed that is backward compatible with the existing parameters of the standard. The proposed superframe overcomes limitations of the standard by fine-tuning its superframe structure and squeezing the size of its contention-free slots. Thus, the proposed superframe adjusts its duty cycle according to the traffic requirements and accommodates more nodes in a superframe structure. The analytical results show that our proposed superframe structure has almost 50% less delay, accommodate more nodes and has better link utilization in a superframe as compared to the IEEE 802.15.4 standard.

9.
PLoS One ; 14(5): e0217631, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150473

RESUMO

The software-defined networking (SDN) paradigm has simplified the management of computer networks by decoupling data and control planes. Moreover, the separation of the data and control planes has transitioned network complexity from traditional devices to controllers; therefore, controllers have become indispensable entities in SDN. Controllers have multiple features and direct the network from a central point and respond to updates to topological changes. However, the supportive capability of these features is strong in one controller but weak in another. Due to several controllers and each controller having a set of features, selecting an optimal SDN controller can be considered to be a multi-criteria decision-making (MCDM) problem. Herein, a two-step approach is proposed for SDN controller selection. First, the controllers are ranked with analytical network process (ANP) according to their qualitative features which influence the performance of these controllers and then a performance comparison is performed to check for the QoS improvement. The controller with a high-weight value from the feature-based comparison is quantitatively analysed by experimental analysis. The main contribution of this paper is checking the applicability of the ANP for controller selection in SDN considering its features and performance analysis in real-world Internet and Brite topologies. The simulation results show that the controller computed through the proposed approach outperforms the controller selected with existing approaches. The selection of an optimum controller with ANP results in a reduction of topology discovery time and delay in the normal and traffic load scenario. Similarly, an increase in throughput with a reasonable utilization of the central processing unit (CPU) is observed for the proposed controller.


Assuntos
Redes de Comunicação de Computadores , Internet , Software , Interface Usuário-Computador , Algoritmos , Computação em Nuvem , Gerenciamento de Dados , Humanos , Registros , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...