Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214906

RESUMO

Infections with defined Herpesviruses, such as Pseudorabies virus (PRV) and Varicella zoster virus (VZV) can cause neuropathic itch, referred to as "mad itch" in multiple species. The underlying mechanisms involved in neuropathic "mad itch" are poorly understood. Here, we show that PRV infections hijack the RNA helicase DDX3X in sensory neurons to facilitate anterograde transport of the virus along axons. PRV induces re-localization of DDX3X from the cell body to the axons which ultimately leads to death of the infected sensory neurons. Inducible genetic ablation of Ddx3x in sensory neurons results in neuronal death and "mad itch" in mice. This neuropathic "mad itch" is propagated through activation of the opioid system making the animals "addicted to itch". Moreover, we show that PRV co-opts and diverts T cell development in the thymus via a sensory neuron-IL-6-hypothalamus-corticosterone stress pathway. Our data reveal how PRV, through regulation of DDX3X in sensory neurons, travels along axons and triggers neuropathic itch and immune deviations to initiate pathophysiological programs which facilitate its spread to enhance infectivity.

2.
PLoS Biol ; 21(2): e3001967, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757924

RESUMO

Although ACE2 is the primary receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, a systematic assessment of host factors that regulate binding to SARS-CoV-2 spike protein has not been described. Here, we use whole-genome CRISPR activation to identify host factors controlling cellular interactions with SARS-CoV-2. Our top hit was a TLR-related cell surface receptor called leucine-rich repeat-containing protein 15 (LRRC15). LRRC15 expression was sufficient to promote SARS-CoV-2 spike binding where they form a cell surface complex. LRRC15 mRNA is expressed in human collagen-producing lung myofibroblasts and LRRC15 protein is induced in severe Coronavirus Disease 2019 (COVID-19) infection where it can be found lining the airways. Mechanistically, LRRC15 does not itself support SARS-CoV-2 infection, but fibroblasts expressing LRRC15 can suppress both pseudotyped and authentic SARS-CoV-2 infection in trans. Moreover, LRRC15 expression in fibroblasts suppresses collagen production and promotes expression of IFIT, OAS, and MX-family antiviral factors. Overall, LRRC15 is a novel SARS-CoV-2 spike-binding receptor that can help control viral load and regulate antiviral and antifibrotic transcriptional programs in the context of COVID-19 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/genética , Antivirais/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Fibroblastos/metabolismo , Ligação Proteica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Am J Respir Crit Care Med ; 207(1): 38-49, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926164

RESUMO

Rationale: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. Objectives: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. Methods: We collected 147 blood, 9 lung tissue, and 36 BAL fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on BAL fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. Measurements and Main Results: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19 but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. Conclusions: Our data suggest that patients with severe COVID-19 harbor IgA autoantibodies against pulmonary surfactant proteins B and C and that these autoantibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation.


Assuntos
COVID-19 , Surfactantes Pulmonares , Humanos , Surfactantes Pulmonares/metabolismo , Líquido da Lavagem Broncoalveolar/química , Tensoativos , Autoanticorpos , Imunoglobulina A
4.
Mol Ther Oncolytics ; 19: 179-187, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33209978

RESUMO

Cancer vaccination aims at inducing an adaptive immune response against tumor-derived antigens. In this study, we utilize recombinant human adenovirus serotype 5 (rAd5) and recombinant lymphocytic choriomeningitis virus (rLCMV)-based vectors expressing the melanocyte differentiation antigen gp100. In contrast to single or homologous vaccination, a heterologous prime boost vaccination starting with a rAd5-gp100 prime immunization followed by a rLCMV-gp100 boost injection induces a high magnitude of polyfunctional gp100-specific CD8+ T cells. Our data indicate that an optimal T cell induction is dependent on the order and interval of the vaccinations. A prophylactic prime boost vaccination with rAd5- and rLCMV-gp100 protects mice from a B16.F10 melanoma challenge. In the therapeutic setting, combination of the vaccination with low-dose cyclophosphamide showed a synergistic effect and significantly delayed tumor growth. Our findings suggest that heterologous viral vector prime boost immunizations can mediate tumor control in a mouse melanoma model.

5.
JAMA Oncol ; 5(7): 1043-1047, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31021392

RESUMO

IMPORTANCE: Immunotherapy with checkpoint inhibitors targeting the PD-1 (programmed cell death 1) axis has brought notable progress in patients with non-small cell lung cancer (NSCLC) and other cancers. However, autoimmune toxic effects are frequent and poorly understood, making it important to understand the pathophysiologic processes of autoimmune adverse effects induced by checkpoint inhibitor therapy. OBJECTIVE: To gain mechanistic insight into autoimmune skin toxic effects induced by anti-PD-1 treatment in patients with non-small cell lung cancer. DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study was conducted from July 1, 2016, to December 31, 2018. Patients (n = 73) with non-small cell lung cancer who received anti-PD-1 therapy (nivolumab or pembrolizumab) were recruited from 4 different centers in Switzerland (Kantonsspital St Gallen, Spital Grabs, Spital Wil, and Spital Flawil). Peripheral blood mononuclear cells, tumor biopsy specimens and biopsies from sites of autoimmune skin toxic effects were collected over a 2-year period, with patient follow-up after 1 year. MAIN OUTCOMES AND MEASURES: Response to treatment, overall survival, progression-free survival, and development of autoimmune toxic effects (based on standard laboratory values and clinical examinations). RESULTS: Of the cohort of 73 patients with NSCLC (mean [SD] age, 68.1 [8.9] years; 44 [60%] men), 25 (34.2% [95% CI, 24.4%-45.7%]) developed autoimmune skin toxic effects, which were more frequent in patients with complete remission or partial remission (68.2% [95% CI, 47.3%-83.6%]) than those with progressive or stable disease (19.6% [95% CI, 11.0%-32.5%]) (χ2 = 14.02, P < .001). Nine T-cell antigens shared between tumor tissue and skin were identified. These antigens were able to stimulate CD8+ and CD4+ T cells in vitro. Several of the antigen-specific T cells found in blood samples were also present in autoimmune skin lesions and lung tumors of patients who responded to anti-PD-1 therapy. CONCLUSIONS AND RELEVANCE: These findings highlight a potential mechanism of checkpoint inhibitor-mediated autoimmune toxic effects and describe the association between toxic effects and response to therapy; such an understanding will help in controlling adverse effects, deciphering new cancer antigens, and further improving immunotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nivolumabe/efeitos adversos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/imunologia , Idoso , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
6.
J Immunother ; 42(3): 89-93, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30768543

RESUMO

Checkpoint inhibitors have improved survival of metastatic melanoma. However, reliable biomarkers to predict response are still needed. Immunoglobulin G (IgG) antibody subclasses reflect immunocompetence in individuals and are known to be involved in essential functions in our immune system. This prospective study evaluated the association between serum IgG with its subclasses IgG1, IgG2, IgG3, and IgG4 and antitumor response according to RECIST 1.1. Serum samples from 49 patients were prospectively collected before the start of treatment with a checkpoint inhibitor. We observed a statistically significant association of baseline IgG2 with response to therapy (P=0.011). After defining optimal cutpoints, we found significant associations between total IgG (>9.66 g/L, P=0.038), IgG1 (>6.22 g/L, P=0.025), IgG2 (>2.42 g/L, P=0.019), and IgG3 (>0.21 g/L, P=0.034) with progression-free survival. Prolonged overall survival was associated with elevated IgG2 (>2.42 g/L, P=0.043). Together, these findings define total IgG and subclasses as predictors of clinical successful checkpoint inhibition in metastatic melanoma patients.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/sangue , Imunoglobulina G/sangue , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno CTLA-4/antagonistas & inibidores , Feminino , Humanos , Masculino , Melanoma/mortalidade , Pessoa de Meia-Idade , Metástase Neoplásica , Seleção de Pacientes , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Estudos Prospectivos , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...