Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605034

RESUMO

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Assuntos
Sítios de Splice de RNA , Retinose Pigmentar , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Proteômica , Splicing de RNA/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Mensageiro/metabolismo , Mutação , DNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
STAR Protoc ; 5(1): 102875, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38386547

RESUMO

Here, we present a protocol for isolating and culturing mouse photoreceptors in a minimal, chemically defined medium free from serum. We describe steps for retina dissection, enzymatic dissociation, photoreceptor enrichment, cell culture, extracellular vesicles (EVs) enrichment, and EV ultrastructural analysis. This protocol, which has been verified for cultured cells derived from multiple murine strains, allows for the study of several aspects of photoreceptor biology, including EV isolation and nanotube formation. For complete details on the use and execution of this protocol, please refer to Kalargyrou et al. (2021).1.


Assuntos
Vesículas Extracelulares , Retina , Animais , Camundongos , Técnicas de Cultura de Células , Dissecação
3.
Redox Biochem Chem ; 5-6: None, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046619

RESUMO

Retinitis pigmentosa (RP) is a disease characterised by photoreceptor cell death. It can be initiated by mutations in a number of different genes, primarily affecting rods, which will die first, resulting in loss of night vision. The secondary death of cones then leads to loss of visual acuity and blindness. We set out to investigate whether increased mitochondrial reactive oxygen species (ROS) formation, plays a role in this sequential photoreceptor degeneration. To do this we measured mitochondrial H2O2 production within mouse eyes in vivo using the mass spectrometric probe MitoB. We found higher levels of mitochondrial ROS that preceded photoreceptor loss in four mouse models of RP: Pde6brd1/rd1; Prhp2rds/rds; RPGR-/-; Cln6nclf. In contrast, there was no increase in mitochondrial ROS in loss of function models of vision loss (GNAT-/-, OGC), or where vision loss was not due to photoreceptor death (Cln3). Upregulation of Nrf2 transcriptional activity with dimethylfumarate (DMF) lowered mitochondrial ROS in RPGR-/- mice. These findings have important implications for the mechanism and treatment of RP.

5.
Am J Pathol ; 193(11): 1694-1705, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37330004

RESUMO

CreTrp1 mice are widely used for conditional retinal pigment epithelium (RPE) gene function studies. Like other Cre/LoxP models, phenotypes in CreTrp1 mice can be affected by Cre-mediated cellular toxicity, leading to RPE dysfunction, altered morphology and atrophy, activation of innate immunity, and consequent impairment of photoreceptor function. These effects are common among the age-related alterations of RPE that feature in early/intermediate forms of age-related macular degeneration. This article characterizes Cre-mediated pathology in the CreTrp1 line to elucidate the impact of RPE degeneration on both developmental and pathologic choroidal neovascularization. Nonredundant roles of the two major components of the hypoxia-inducible factor (HIF) family of transcription regulators, HIF1α and HIF2α, were identified. Genetic ablation of Hif1a protected against Cre-induced degeneration of RPE and choroid, whereas ablation of Hif2a exacerbated this degeneration. Furthermore, HIF1α deficiency protected CreTrp1 mice against laser-induced choroidal neovascularization, whereas HIF2α deficiency exacerbated the phenotype. Cre-mediated degeneration of the RPE in CreTrp1 mice offers an opportunity to investigate the impact of hypoxia signaling in the context of RPE degeneration. These findings indicate that HIF1α promotes Cre recombinase-mediated RPE degeneration and laser-induced choroidal neovascularization, whereas HIF2α is protective.

6.
Cold Spring Harb Perspect Med ; 13(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37188525

RESUMO

Retinitis pigmentosa GTPase regulator (RPGR) gene variants are the predominant cause of X-linked retinitis pigmentosa (XLRP) and a common cause of cone-rod dystrophy (CORD). XLRP presents as early as the first decade of life, with impaired night vision and constriction of peripheral visual field and rapid progression, eventually leading to blindness. In this review, we present RPGR gene structure and function, molecular genetics, animal models, RPGR-associated phenotypes and highlight emerging potential treatments such as gene-replacement therapy.


Assuntos
Proteínas do Olho , Retinose Pigmentar , Animais , Mutação , Proteínas do Olho/genética , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Biologia Molecular
7.
Am J Ophthalmol ; 253: 243-251, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37172884

RESUMO

PURPOSE: To assess the safety and efficacy of AAV8-hCARp.hCNGB3 in participants with CNGB3-associated achromatopsia (ACHM). DESIGN: Prospective, phase 1/2 (NCT03001310), open-label, nonrandomized clinical trial. METHODS: The study enrolled 23 adults and children with CNGB3-associated ACHM. In the dose-escalation phase, adult participants were administered 1 of 3 AAV8-hCARp.hCNGB3 dose levels in the worse-seeing eye (up to 0.5 mL). After a maximum tolerated dose was established in adults, an expansion phase was conducted in children ≥3 years old. All participants received topical and oral corticosteroids. Safety and efficacy parameters, including treatment-related adverse events and visual acuity, retinal sensitivity, color vision, and light sensitivity, were assessed for 6 months. RESULTS: AAV8-hCARp.hCNGB3 (11 adults, 12 children) was safe and generally well tolerated. Intraocular inflammation occurred in 9 of 23 participants and was mainly mild or moderate in severity. Severe cases occurred primarily at the highest dose. Two events were considered serious and dose limiting. All intraocular inflammation resolved following topical and systemic steroids. There was no consistent pattern of change from baseline to week 24 for any efficacy assessment. However, favorable changes were observed for individual participants across several assessments, including color vision (n = 6/23), photoaversion (n = 11/20), and vision-related quality-of-life questionnaires (n = 21/23). CONCLUSIONS: AAV8-hCARp.hCNGB3 for CNGB3-associated ACHM demonstrated an acceptable safety and tolerability profile. Improvements in several efficacy parameters indicate that AAV8-hCARp.hCNGB3 gene therapy may provide benefit. These findings, with the development of additional sensitive and quantitative end points, support continued investigation.


Assuntos
Defeitos da Visão Cromática , Humanos , Adulto , Criança , Pré-Escolar , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/terapia , Estudos Prospectivos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Terapia Genética , Inflamação
8.
Hum Gene Ther ; 34(13-14): 639-648, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014074

RESUMO

The use of AAV-RPE65 vectors for gene supplementation has achieved spectacular success as a treatment for individuals with autosomal recessive retinal disease caused by biallelic mutations in the visual cycle gene RPE65. However, the efficacy of this approach in treating autosomal dominant retinitis pigmentosa (adRP) associated with a monoallelic mutation encoding a rare D477G RPE65 variant has not been studied. Although lacking a severe phenotype, we now find that knock-in mice heterozygous for D477G RPE65 (D477G KI mice) can be used to evaluate outcomes of AAV-RPE65 gene supplementation. Total RPE65 protein levels, which are decreased in heterozygous D477G KI mice, were doubled following subretinal delivery of rAAV2/5.hRPE65p.hRPE65. In addition, rates of recovery of the chromophore 11-cis retinal after bleaching were significantly increased in eyes that received AAV-RPE65, consistent with increased RPE65 isomerase activity. While dark-adapted chromophore levels and a-wave amplitudes were not affected, b-wave recovery rates were modestly improved. The present findings establish that gene supplementation enhances 11-cis retinal synthesis in heterozygous D477G KI mice and complement previous studies showing that chromophore therapy results in improved vision in individuals with adRP associated with D477G RPE65.


Assuntos
Retina , Retinose Pigmentar , Animais , Camundongos , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Mutação , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo
9.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36121394

RESUMO

Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKß/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKß/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKß is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKß signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKß is also required for efficient particle translocation from the cortex into the cell body in Fc receptor-mediated phagocytosis. Thus, conserved MRCKß signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.


Assuntos
Actomiosina , Miotonina Proteína Quinase , Fagocitose , Actinas/metabolismo , Actomiosina/metabolismo , Miosina Tipo II/metabolismo , Miotonina Proteína Quinase/metabolismo , Fagocitose/fisiologia , Proteínas Tirosina Quinases , Receptores Fc , c-Mer Tirosina Quinase/metabolismo
10.
Sci Rep ; 12(1): 12694, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882889

RESUMO

The retinal pigment epithelium (RPE) is a polarized monolayer that secretes growth factors and cytokines towards the retina apically and the choroid basolaterally. Numerous RPE secreted proteins have been linked to the pathogenesis of age-related macular degeneration (AMD). The purpose of this study was to determine the differential apical and basolateral secretome of RPE cells, and the effects of oxidative stress on directional secretion of proteins linked to AMD and angiogenesis. Tandem mass tag spectrometry was used to profile proteins in human iPSC-RPE apical and basolateral conditioned media. Changes in secretion after oxidative stress induced by H2O2 or tert-butyl hydroperoxide (tBH) were investigated by ELISA and western analysis. Out of 926 differentially secreted proteins, 890 (96%) were more apical. Oxidative stress altered the secretion of multiple factors implicated in AMD and neovascularization and promoted a pro-angiogenic microenvironment by increasing the secretion of pro-angiogenic molecules (VEGF, PTN, and CRYAB) and decreasing the secretion of anti-angiogenic molecules (PEDF and CFH). Apical secretion was impacted more than basolateral for PEDF, CRYAB and CFH, while basolateral secretion was impacted more for VEGF, which may have implications for choroidal neovascularization. This study lays a foundation for investigations of dysfunctional RPE polarized protein secretion in AMD and other chorioretinal degenerative disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Indutores da Angiogênese/farmacologia , Células Cultivadas , Humanos , Peróxido de Hidrogênio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/patologia , Estresse Oxidativo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Stem Cell Reports ; 17(6): 1476-1492, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35523177

RESUMO

Advances in the study of neurological conditions have been possible because of pluripotent stem cell technologies and organoids. Studies have described the generation of neural ectoderm-derived retinal and brain structures from pluripotent stem cells. However, the field is still troubled by technical challenges, including high culture costs and variability. Here, we describe a simple and economical protocol that reproducibly gives rise to the neural retina and cortical brain regions from confluent cultures of stem cells. The spontaneously generated cortical organoids are transcriptionally comparable with organoids generated by other methods. Furthermore, these organoids showed spontaneous functional network activity and proteomic analysis confirmed organoids maturity. The generation of retinal and brain organoids in close proximity enabled their mutual isolation. Suspension culture of this complex organoid system demonstrated the formation of nerve-like structures connecting retinal and brain organoids, which might facilitate the investigation of neurological diseases of the eye and brain.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Encéfalo , Diferenciação Celular , Organoides , Proteômica , Retina
12.
J Biol Chem ; 298(6): 101944, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447116

RESUMO

Mechanistic target of rapamycin (mTOR) and mTOR complex 1 (mTORC1), linchpins of the nutrient sensing and protein synthesis pathways, are present at relatively high levels in the ganglion cell layer (GCL) and retinal ganglion cells (RGCs) of rodent and human retinas. However, the role of mTORCs in the control of protein synthesis in RGC is unknown. Here, we applied the SUrface SEnsing of Translation (SUnSET) method of nascent protein labeling to localize and quantify protein synthesis in the retinas of adult mice. We also used intravitreal injection of an adeno-associated virus 2 vector encoding Cre recombinase in the eyes of mtor- or rptor-floxed mice to conditionally knockout either both mTORCs or only mTORC1, respectively, in cells within the GCL. A novel vector encoding an inactive Cre mutant (CreΔC) served as control. We found that retinal protein synthesis was highest in the GCL, particularly in RGC. Negation of both complexes or only mTORC1 significantly reduced protein synthesis in RGC. In addition, loss of mTORC1 function caused a significant reduction in the pan-RGC marker, RNA-binding protein with multiple splicing, with little decrease of the total number of cells in the RGC layer, even at 25 weeks after adeno-associated virus-Cre injection. These findings reveal that mTORC1 signaling is necessary for maintaining the high rate of protein synthesis in RGCs of adult rodents, but it may not be essential to maintain RGC viability. These findings may also be relevant to understanding the pathophysiology of RGC disorders, including glaucoma, diabetic retinopathy, and optic neuropathies.


Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Glaucoma/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
13.
Stem Cell Reports ; 17(4): 775-788, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334217

RESUMO

The generation of retinal organoids from human pluripotent stem cells (hPSC) is now a well-established process that in part recapitulates retinal development. However, hPSC-derived photoreceptors that exhibit well-organized outer segment structures have yet to be observed. To facilitate improved inherited retinal disease modeling, we determined conditions that would support outer segment development in maturing hPSC-derived photoreceptors. We established that the use of antioxidants and BSA-bound fatty acids promotes the formation of membranous outer segment-like structures. Using new protocols for hPSC-derived retinal organoid culture, we demonstrated improved outer segment formation for both rod and cone photoreceptors, including organized stacked discs. Using these enhanced conditions to generate iPSC-derived retinal organoids from patients with X-linked retinitis pigmentosa, we established robust cellular phenotypes that could be ameliorated following adeno-associated viral vector-mediated gene augmentation. These findings should aid both disease modeling and the development of therapeutic approaches for the treatment of photoreceptor disorders.


Assuntos
Organoides , Células-Tronco Pluripotentes , Antioxidantes/farmacologia , Suplementos Nutricionais , Humanos , Lipídeos , Retina , Células Fotorreceptoras Retinianas Cones
14.
Clin Transl Med ; 12(3): e759, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297555

RESUMO

INTRODUCTION: Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP is poorly understood. METHODS: We used the induced pluripotent stem cell (iPSC) technology to generate retinal organoids and RPE models from four patients with severe and very severe PRPF31-adRP, unaffected individuals and a CRISPR/Cas9 isogenic control. RESULTS: To fully assess the impacts of PRPF31 mutations, quantitative proteomics analyses of retinal organoids and RPE cells were carried out showing RNA splicing, autophagy and lysosome, unfolded protein response (UPR) and visual cycle-related pathways to be significantly affected. Strikingly, the patient-derived RPE and retinal cells were characterised by the presence of large amounts of cytoplasmic aggregates containing the mutant PRPF31 and misfolded, ubiquitin-conjugated proteins including key visual cycle and other RP-linked tri-snRNP proteins, which accumulated progressively with time. The mutant PRPF31 variant was not incorporated into splicing complexes, but reduction of PRPF31 wild-type levels led to tri-snRNP assembly defects in Cajal bodies of PRPF31 patient retinal cells, altered morphology of nuclear speckles and reduced formation of active spliceosomes giving rise to global splicing dysregulation. Moreover, the impaired waste disposal mechanisms further exacerbated aggregate formation, and targeting these by activating the autophagy pathway using Rapamycin reduced cytoplasmic aggregates, leading to improved cell survival. CONCLUSIONS: Our data demonstrate that it is the progressive aggregate accumulation that overburdens the waste disposal machinery rather than direct PRPF31-initiated mis-splicing, and thus relieving the RPE cells from insoluble cytoplasmic aggregates presents a novel therapeutic strategy that can be combined with gene therapy studies to fully restore RPE and retinal cell function in PRPF31-adRP patients.


Assuntos
Autofagia , Proteínas do Olho , Células-Tronco Pluripotentes Induzidas , Agregados Proteicos , Retinose Pigmentar , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Ribonucleoproteínas Nucleares Pequenas
15.
Exp Eye Res ; 215: 108908, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954204

RESUMO

Opticin is an extracellular glycoprotein present in the vitreous. Its antiangiogenic properties offer the potential for therapeutic intervention in conditions such as proliferative diabetic retinopathy and retinopathy of prematurity. Here, we investigated the hypothesis that intravitreal administration of recombinant human opticin can safely protect against the development of pathological angiogenesis and promote its regression. We generated and purified recombinant human opticin and investigated its impact on the development and regression of pathological retinal neovascularization following intravitreal administration in murine oxygen-induced retinopathy. We also investigated its effect on normal retinal vascular development and function, following intravitreal injection in neonatal mice, by histological examination and electroretinography. In oxygen-induced retinopathy, intravitreal administration of human recombinant opticin protected against the development of retinal neovascularization to similar extent as aflibercept, which targets VEGF. Opticin also accelerated regression of established retinal neovascularization, though the effect at 18 h was less than that of aflibercept. Intravitreal administration of human recombinant opticin in neonatal mice caused no detectable perturbation of subsequent retinal vascular development or function. In summary we found that intraocular administration of recombinant human opticin protects against the development of pathological angiogenesis in mice and promotes its regression.


Assuntos
Hiperóxia , Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Modelos Animais de Doenças , Humanos , Hiperóxia/complicações , Recém-Nascido , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Oxigênio/toxicidade , Neovascularização Retiniana/tratamento farmacológico , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/prevenção & controle
16.
Front Mol Neurosci ; 15: 1042469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710933

RESUMO

The retina encompasses a network of neurons, glia and epithelial and vascular endothelia cells, all coordinating visual function. Traditionally, molecular information exchange in this tissue was thought to be orchestrated by synapses and gap junctions. Recent findings have revealed that many cell types are able to package and share molecular information via extracellular vesicles (EVs) and the technological advancements in visualisation and tracking of these delicate nanostructures has shown that the role of EVs in cell communication is pleiotropic. EVs are released under physiological conditions by many cells but they are also released during various disease stages, potentially reflecting the health status of the cells in their cargo. Little is known about the physiological role of EV release in the retina. However, administration of exogenous EVs in vivo after injury suggest a neurotrophic role, whilst photoreceptor transplantation in early stages of retina degeneration, EVs may facilitate interactions between photoreceptors and Müller glia cells. In this review, we consider some of the proposed roles for EVs in retinal physiology and discuss current evidence regarding their potential impact on ocular therapies via gene or cell replacement strategies and direct intraocular administration in the diseased eye.

17.
STAR Protoc ; 2(4): 101008, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34917982

RESUMO

The developing retina undergoes dynamic organizational changes involving significant intra-retinal motility of the encompassing cells. Here, we present a protocol for tracking retinal cell motility in live explanted mouse retinae. Although originally applied to rod and cone photoreceptors, this strategy is applicable to any fluorescently labeled cell in mouse retinae and other similar experimental retinal models. Careful tissue handling is critical for the successful acquisition of high-quality live imaging data. Further instructions for semi-automated in silico data handling are provided. For complete details on the use and execution of this protocol, please refer to Aghaizu et al. (2021).


Assuntos
Movimento Celular/fisiologia , Rastreamento de Células/métodos , Retina , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Animais , Feminino , Proteínas Luminescentes , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Retina/citologia , Retina/diagnóstico por imagem , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Imagem com Lapso de Tempo
18.
EMBO Rep ; 22(11): e53732, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34494703

RESUMO

Neuronal communication is typically mediated via synapses and gap junctions. New forms of intercellular communication, including nanotubes (NTs) and extracellular vesicles (EVs), have been described for non-neuronal cells, but their role in neuronal communication is not known. Recently, transfer of cytoplasmic material between donor and host neurons ("material transfer") was shown to occur after photoreceptor transplantation. The cellular mechanism(s) underlying this surprising finding are unknown. Here, using transplantation, primary neuronal cultures and the generation of chimeric retinae, we show for the first time that mammalian photoreceptor neurons can form open-end NT-like processes. These processes permit the transfer of cytoplasmic and membrane-bound molecules in culture and after transplantation and can mediate gain-of-function in the acceptor cells. Rarely, organelles were also observed to transfer. Strikingly, use of chimeric retinae revealed that material transfer can occur between photoreceptors in the intact adult retina. Conversely, while photoreceptors are capable of releasing EVs, at least in culture, these are taken up by glia and not by retinal neurons. Our findings provide the first evidence of functional NT-like processes forming between sensory neurons in culture and in vivo.


Assuntos
Vesículas Extracelulares , Nanotubos , Animais , Comunicação Celular , Mamíferos , Neurônios , Retina
19.
Front Cell Dev Biol ; 9: 700276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395430

RESUMO

Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15-20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell's transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.

20.
Cell Rep ; 36(5): 109461, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348137

RESUMO

In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination.


Assuntos
Núcleo Celular/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Actomiosina/metabolismo , Animais , Dineínas/metabolismo , Cinética , Camundongos Transgênicos , Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Neurogênese , Polimerização , Transporte Proteico , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...