Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446463

RESUMO

This review provides the recent advances in triglyceride catalytic pyrolysis using heterogeneous dolomite catalysts for upgrading biofuel quality. The production of high-quality renewable biofuels through catalytic cracking pyrolysis has gained significant attention due to their high hydrocarbon and volatile matter content. Unlike conventional applications that require high operational costs, long process times, hazardous material pollution, and enormous energy demand, catalytic cracking pyrolysis has overcome these challenges. The use of CaO, MgO, and activated dolomite catalysts has greatly improved the yield and quality of biofuel, reducing the acid value of bio-oil. Modifications of the activated dolomite surface through bifunctional acid-base properties also positively influenced bio-oil production and quality. Dolomite catalysts have been found to be effective in catalyzing the pyrolysis of triglycerides, which are a major component of vegetable oils and animal fats, to produce biofuels. Recent advances in the field include the use of modified dolomite catalysts to improve the activity and selectivity of the catalytic pyrolysis process. Moreover, there is also research enhancement of the synthesis and modification of dolomite catalysts in improving the performance of biofuel yield conversion. Interestingly, this synergy contribution has significantly improved the physicochemical properties of the catalysts such as the structure, surface area, porosity, stability, and bifunctional acid-base properties, which contribute to the catalytic reaction's performance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-16760091

RESUMO

Feedstock recycling of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Fresh and steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as used FCC catalysts (E-Cats) with different levels of metal poisoning. Fresh FCC catalysts gave the highest results of HDPE degradation in terms of yield of volatile hydrocarbon product. Meanwhile, steamed FCC catalysts and used FCC catalysts showed similar but lower yields. Overall, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste.


Assuntos
Conservação dos Recursos Naturais/métodos , Resíduos Industriais , Polietileno/química , Catálise , Temperatura Alta , Eliminação de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...