Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1221537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818314

RESUMO

Introduction: Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae is a major disease of rice, specially in the tropical regions of the world. Developing rice varieties with host resistance against the disease is the most effective and economical solution for managing the disease. Methods: Pyramiding resistance genes (Xa4, xa5, xa13,and Xa21) in popular rice varieties using marker-assisted backcross breeding (MABB) has been demonstrated as a cost-effective and sustainable approach for establishing durable BB resistance. Here, we report our successful efforts in introgressing four resistance genes (Xa4, xa5, xa13, and Xa21) from IRBB60 to CARI Dhan 5, a popular salt-tolerant variety developed from a somaclonal variant of Pokkali rice, through functional MABB. Results and discussion: Both BB and coastal salinity are among the major challenges for rice production in tropical island and coastal ecosystems. Plants with four, three, and two gene pyramids were generated, which displayed high levels of resistance to the BB pathogen at the BC3F2 stage. Under controlled salinity microplot environments, the line 131-2-175-1223 identified with the presence of three gene pyramid (Xa21+xa13+xa5) displayed notable resistance across locations and years as well as exhibited a salinity tolerance comparable to the recurrent parent, CARI Dhan 5. Among two BB gene combinations (Xa21+xa13), two lines, 17-1-69-334 and 46-3-95-659, demonstrated resistance across locations and years, as well as salt tolerance and grain production comparable to CARI Dhan 5. Besides salinity tolerance, five lines, 17-1-69-179, 46-3-95-655, 131-2-190-1197, 131-2-175-1209, and 131-2-175-1239, exhibited complete resistance to BB disease. Following multilocation testing, potential lines have been identified that can serve as a prospective candidate for producing varieties for the tropical Andaman and Nicobar Islands and other coastal locations, which are prone to BB and coastal salinity stresses.

2.
Front Nutr ; 10: 1088208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908925

RESUMO

Introduction: Rice crop meets the calorie and nutritional requirements of a larger segment of the global population. Here, we report the occurrence of intra-varietal variation in a popular rice landrace C14-8 traditionally grown under the geographical isolation of the Andaman Islands. Methods: Based on grain husk color, four groups were formed, wherein the extent of intra-varietal variation was studied by employing 22 agro-morphological and biochemical traits. Results: Among the traits studied, flavonoid and anthocyanin contents and grain yield exhibited a wider spectrum of variability due to more coefficients of variation (>25%). The first five principal components (PCs) of principal components analysis explained a significant proportion of the variation (91%) and the first two PCs explained 63.3% of the total variation, with PC1 and PC2 explaining 35.44 and 27.91%, respectively. A total of 50 highly variable SSR (HvSSR) markers spanning over 12 chromosomes produced 314 alleles, which ranged from 1 to 15 alleles per marker, with an average of 6.28. Of the 314 alleles, 64 alleles were found to be rare among the C14-8 selections. While 62% of HvSSR markers exhibited polymorphism among the C14-8 population, chromosomes 2, 7, 9, and 11 harbored the most polymorphic loci. The group clustering of the selections through HvSSR markers conformed to the grouping based on grain husk coloration. Discussion: Our studies on the existence and pertinence of intra-varietal variations are expected to be of significance in the realms of evolutionary biology and sustainable food and nutritional security under the changing climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...