Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674844

RESUMO

Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal plant in South-East Asian countries. The chemical investigation of leaves from this species resulted in the isolation of three previously not described compounds, namely 4″-(3-hydroxy-3-methylglutaroyl)-2″-ß-D-glucopyranosyl vitexin (1), kadukoside (2), and 6-O-trans-p-coumaroyl-D-glucono-1,4-lactone (3), together with 31 known compounds. Of these known compounds, 21 compounds were isolated for the first time from P. sarmentosum. The structures were established by 1D and 2D NMR techniques and HR-ESI-MS analyses. The compounds were evaluated for their anthelmintic (Caenorhabditis elegans), antifungal (Botrytis cinerea, Septoria tritici and Phytophthora infestans), antibacterial (Aliivibrio fischeri) and cytotoxic (PC-3 and HT-29 human cancer cells lines) activities. Methyl-3-(4-methoxyphenyl)propionate (8), isoasarone (12), and trans-asarone (15) demonstrated anthelmintic activity with IC50 values between 0.9 and 2.04 mM. Kadukoside (2) was most active against S. tritici with IC50 at 5.0 µM and also induced 94% inhibition of P. infestans growth at 125 µM. Trans-asarone (15), piperolactam A (23), and dehydroformouregine (24) displayed a dose-dependent effect against B. cinerea from 1.5 to 125 µM up to more than 80% inhibition. Paprazine (19), cepharadione A (21) and piperolactam A (23) inhibited bacterial growth by more than 85% at 100 µM. Only mild cytotoxic effects were observed.


Assuntos
Derivados de Alilbenzenos , Piper , Humanos , Piper/química , Anisóis , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Saudi J Biol Sci ; 29(5): 3546-3567, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844369

RESUMO

Probiotics such as Lactobacillus spp. play an important role in human health as they embark beneficial effect on the human gastrointestinal microflora composition and immune system. Dysbiosis in the gastrointestinal microbial composition has been identified as a major contributor to chronic inflammatory conditions, such as inflammatory bowel disease (IBD). Higher prevalence of IBD is often recorded in most of the developed Western countries, but recent data has shown an increase in previously regarded as lower risk regions, such as Japan, Malaysia, Singapore, and India. Although the IBD etiology remains a subject of speculation, the disease is likely to have developed because of interaction between extrinsic environmental elements; the host's immune system, and the gut microbial composition. Compared to conventional treatments, probiotics and probiotic-based interventions including the introduction of specific prebiotics, symbiotic and postbiotic products had been demonstrated as more promising therapeutic measures. The present review discusses the association between gut dysbiosis, the pathogenesis of IBD, and risk factors leading to gut dysbiosis. In addition, it discusses recent studies focused on the alteration of the gastrointestinal microbiome as an effective therapy for IBD. The impact of the COVID-19 pandemic and other viral infections on IBD are also discussed in this review. Clinical and animal-based studies have shown that probiotic-based therapies can restore the gastrointestinal microbiota balance and reduce gut inflammations. Therefore, this review also assesses the status quo of these microbial-based therapies for the treatment of IBD. A better understanding of the mechanisms of their actions on modulating altered gut microbiota is required to enhance the effectiveness of the IBD therapeutics.

3.
Saudi J Biol Sci ; 29(4): 2998-3005, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531164

RESUMO

Red pepper (Capsicum annuum L.) is one of the most commonly cultivated vegetable in the Mediterranean region. This study evaluated the effects of biochar derived from corncob and poultry litter on growth of red pepper (Capsicum annuum L.) and some chemical properties of a silty clay soil. The experiment consisted of two factors, i.e., biochar doses (0, 0.5, 1.0 and 2%) and poultry litter doses (0, 0.5, 1.0 and 2%). The number of days to 50% flowering, plant height, stem diameter, total number of leaves per plant, the number of main branches per plant, fresh root weight, root length, dry shoot weight, macro (P and K) and micro (Fe, Zn, Cu and Mn) nutrient concentrations of leaves were determined to compare the efficiency biochar and poultry litter. Moreover, post-harvest soil analysis was conducted to measure pH, organic matter, and macro and micronutrient contents. Biochar had varying impact on plant growth parameters, whereas poultry litter alone or in combination with biochar increased macro and micronutrient concentrations of soil and improved most of the growth parameters of red pepper. In contrast, sole biochar application had no significant impact on most of the growth parameters. Wider C/N ratio (107.7) of corncob derived biochar restricted the nitrogen supply for plant growth. The combination of 0.5% biochar and 2% poultry litter resulted in the highest plant height (36.7 cm) and stem diameter (0.69 cm). The results revealed that application of single biochar derived from corncob is insufficient to supply adequate nutrients for optimal plant growth. The application of biochar alone enhances carbon sequestration in soils, however most biochars like cornconb biochar do not contain sufficient available plant nutrients. Therefore, biochars should be applied along with mineral fertilizers or organic materials such as poultry manure which is rich in available plant nutrients.

4.
Sci Rep ; 12(1): 7564, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534597

RESUMO

Pectate lyase is a hydrolytic enzyme used by diverse industries to clarify food. The enzyme occupies a 25% share of the total enzyme used in food industries, and their demand is increasing gradually. Most of the enzymes in the market belong to the fungal origin and take more time to produce with high viscosity in the fermentation medium, limiting its use. The bacteria belonging to the genus Bacillus have vast potential to produce diverse metabolites of industrial importance. The present experiment aimed to isolate pectate lyase-producing bacteria that can tolerate an alkaline environment at moderate temperatures. Bacillus subtilis PKC2, Bacillus licheniformis PKC4, Paenibacillus lactis PKC5, and Bacillus sonorensis ADCN produced pectate lyase. The Paenibacillus lactis PKC5 gave the highest protein at 48 h of incubation that was partially purified using 80% acetone and ammonium sulphate. Purification with 80% acetone resulted in a good enzyme yield with higher activity. SDS-PAGE revealed the presence of 44 kDa molecular weight of purified enzyme. The purified enzyme exhibits stability at diverse temperature and pH ranges, the maximum at 50 °C and 8.0 pH. The metal ions such as Mg2+, Zn2+, Fe2+, and Co2+ significantly positively affect enzyme activity, while increasing the metal ion concentration to 5 mM showed detrimental effects on the enzyme activity. The organic solvents such as methanol and chloroform at 25% final concentration improved the enzyme activity. On the other hand, detergent showed inhibitory effects at 0.05% and 1% concentration. Pectate lyase from Paenibacillus lactis PKC5 had Km and Vmax values as 8.90 mg/ml and 4.578 µmol/ml/min. The Plackett-Burman and CCD designs were used to identify the significant process parameters, and optimum concentrations were found to be pectin (5 gm%) and ammonium sulphate (0.3 gm%). During incubation with pectate lyase, the clarity percentage of the grape juice, apple juice, and orange juice was 60.37%, 59.36%, and 49.91%, respectively.


Assuntos
Acetona , Álcalis , Sulfato de Amônio , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Paenibacillus , Polissacarídeo-Liases/metabolismo , Temperatura
5.
Saudi J Biol Sci ; 29(2): 730-734, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197738

RESUMO

Now-a-days, different bioproducts are being used extensively for the welfare of mankind. However, for proper utility of any bioproduct, the exact biotechnological potential of that product should be explored. Honey is produced in almost every country on the planet. It has long been used as a medicinal agent in addition to its broader use as a popular food throughout the human history. It can be used to treat various diseases without causing any negative side effects. In the present study, the antibacterial potential of honey produced by A. dorsata was investigated at its variable concentrations (25, 50, 75 and 100 %) against four pathogenic bacterial species. The highest antimicrobial action was seen against E. coli at 100 % concentration of the honey while showing zone of inhibition of 37.5 ±â€¯3.5 mm. However, the lowest antibacterial action was observed against E. faecalis. The overall order of growth inhibition by the honey at its 100 % concentration for the implicated bacterial species appeared as: E. coli ˃ P. aeruginosa ˃ S. aureus ˃ E. faecalis. The honey couldn't show antibacterial action at its 25 % concentration. Our findings of the present study will be helpful for utility of the honey as an alternative medicine for curing different complications caused by microbial pathogens.

6.
Saudi J Biol Sci ; 29(2): 774-780, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197744

RESUMO

OBJECTIVES: Date palm (Phoenix dactylifera) mucilage obtained from its dried fruits was evaluated to check the proximate composition and physicochemical properties. METHODS: Commercially available date palm mucilage was precipitated using ethanol. Both (crude and purified) mucilage samples were subjected for proximate, physiochemical, biochemical and antioxidant activity using standard experimental protocols. Elemental analysis of crude date palm mucilage was also performed using LIBS. RESULTS: Ethanol was used to purify the mucilage (58.4% yield). Proximate analysis was carried out on crude and purified mucilages showing crude fat, crude protein, crude fiber, total carbohydrates, nitrogen free extract and total energy in purified mucilage were more than the crude mucilage. Moisture and ash contents were found more in crude mucilage than the purified mucilage. Laser introduced breakdown spectroscopy (LIBS) detected Zn, Mg, Mn, K, Na, Cu, Fe and Ca metals as components of mucilage. Biochemical profiling indicated that crude and purified mucilage have proteins, protease, superoxide dismutase, catalase, peroxidase, amylase, ascorbate peroxidase, free amino acids, total soluble sugars, reducing sugars, non-reducing sugars, total anthocyanin, free anthocyanin, total flavonoid contents and total phenolic contents. CONCLUSION: The study shows that date palm mucilage could be potentially used as pharmaceutical and medicinal ingredient due to presence of bioactive compounds and its physicochemical properties.

7.
Saudi J Biol Sci ; 28(9): 4859-4866, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466059

RESUMO

OBJECTIVE: Serious non-gastrointestinal-tract infections and food poisoning are caused by Bacillus cereus. Vaccination against B. cereus is very important. The aim of this study was to identify and analyze B and T cell epitopes for chromate transporter protein of the bacteria. METHODS: Multiple sequence alignment with the Clustal Omega method was used to identify conserved regions and Geneious Prime was used to produce a consensus sequence. T and B cell epitopes were predicted by various computational tools from the NetCTL and Immune Epitope Database (IEDB), respectively. RESULTS: Altogether, 6 HTL cells and 11 CTL epitopes were predicted. This vaccine's molecular docking is done with Patch Dock and LigPlot to verify interactions. The immune server (C-IMMSIM) was used to develop In silico immune response in order to assess the multi-epitope vaccine's immunogenic profile. CONCLUSION: We designed universal vaccine against B. cereus responsible for food poisoning. The disease may be avoided with the aid of the proposed epitope-based vaccine.

8.
Saudi J Biol Sci ; 28(9): 4867-4875, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466060

RESUMO

Unwanted agricultural waste is largely comprised of lignocellulosic substrate which could be transformed into sugars. The production of bioethanol from garbage manifested an agreeable proposal towards waste management as well as energy causation. The goal of this work is to optimize parameters for generation of bioethanol through fermentation by different yeast strains while Saccharomyces cerevisiae used as standard strain. The low cost fermentable sugars from pomegranate peels waste (PPW) were obtained by hydrolysis with HNO3 (1 to 5%). The optimum levels of hydrolysis time and temperature were elucidated via RSM (CCD) ranging from 30 to 60 min and 50 to 100 °C respectively. The result shows that optimum values (g/L) for reducing sugars was 61.45 ± 0.01 while for total carbohydrates was 236 ± 0.01. These values were found when PPW was hydrolyzed with 3% HNO3, at 75 °C for one hour. The hydrolyzates obtained from the dilute HNO3 pretreated PPW yielded a maximum of 0.43 ± 0.04, 0.41 ± 0.03 g ethanol per g of reducing sugars by both Metchnikowia sp. Y31 and M. cibodasensis Y34 at day 7 of ethanologenic experiment. The current study exhibited that by fermentation of dilute HNO3 hydrolyzates of PPW could develop copious amount of ethanol by optimized conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...