Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133985, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471378

RESUMO

Identifying potent bacterial algicidal agents is essential for the development of effective, safe, and economically viable algaecides. Challenges in isolating and purifying these substances from complex secretions have impeded progress in this field. Metabolomics profiling, an efficient strategy for identifying metabolites, was pioneered in identifying bacterial algicidal substances in this study. Extracellular secretions from different generations of the algicidal bacterium Brevibacillus sp. were isolated for comprehensive analysis. Specifically, a higher algicidal efficacy was observed in the secretion from Generation 3 (G3) of Brevibacillus sp. compared to Generation 1 (G1). Subsequent metabolomics profiling comparing G3 and 1 revealed 83 significantly up-regulated metabolites, of which 9 were identified as potential algicidal candidates. Back-validation highlighted the potency of 4-acetamidobutanoic acid (4-ABC) and 8-hydroxyquinoline (8-HQL), which exhibited robust algicidal activity with 3d-EC50 values of 6.40 mg/L and 92.90 µg/L, respectively. These substances disrupted photosynthetic activity in M. aeruginosa by ceasing electron transfer in PSⅡ, like the impact exerted by Brevibacillus sp. secretion. These findings confirmed that 4-ABC and 8-HQL were the main algicidal components derived from Brevibacillus sp.. Thus, this study presents a streamlined strategy for identifying bacterial algicidal substances and unveils two novel and highly active algicidal substances. ENVIRONMENTAL IMPLICATION: Harmful cyanobacterial blooms (HCBs) pose significant environmental problems and health effects to humans and other organisms. The increasing frequency of HCBs has emerged as a pressing global concern. Bacterial-derived algicidal substances are expected to serve as effective, safe, and economically viable algaecides against HCBs. This study presents a streamlined strategy for identifying bacterial algicidal substances and unveils two novel substances (4-ABC and 8-HQL). These two substances demonstrate remarkable algicidal activity and disrupt the photosynthetic system in M. aeruginosa. They hold potential as prospective algaecides for addressing HCBs.


Assuntos
Brevibacillus , Herbicidas , Microcystis , Humanos , Estudos Prospectivos , Fotossíntese , Proliferação Nociva de Algas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...