Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-509485

RESUMO

SARS-CoV-2 is the causative agent of COVID-19. The highly conserved viral NSP15 endoribonuclease, NendoU, is a key enzyme involved in viral immune evasion, and a promising target for the development of new classes of antivirals. Yet, the broad variety of recognition sequences, complex assembly and kinetics, and lack of structural complexes hampers the development of new competitive or allosteric inhibitors for this target. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index of 2. By using cryo-EM at distinct pHs combined with X-ray crystallography and structural analysis, we demonstrate the potential for NendoU to shift between open and closed states, and assembly in larger supramolecular entities, which might serve as a mechanism of self-regulation. Further, we report results from a large fragment screening campaign against NendoU, revealing multiple new allosteric sites for the development of inhibitors.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435326

RESUMO

The global COVID-19 pandemic is caused by the SARS-CoV-2 virus and has infected over 100 million and caused over 2 million fatalities worldwide at the point of writing. There is currently a lack of effective drugs to treat people infected with SARS-CoV-2. The SARS-CoV-2 Non-structural protein 13 (NSP13) is a superfamily1B helicase that has been identified as a possible target for anti-viral drugs due to its high sequence conservation and essential role in viral replication. In this study we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and the non-hydrolysable ATP analogue (AMP-PNP). Comparisons of these structures reveal details of global and local conformational changes that are induced by nucleotide binding and hydrolysis and provide insights into the helicase mechanism and possible modes of inhibition. Structural analysis reveals two pockets on NSP13 that are classified as "druggable" and include one of the most conserved sites in the entire SARS-CoV-2 proteome. To identify possible starting points for anti-viral drug development we have performed a crystallographic fragment screen against SARS-CoV-2 NSP13 helicase. The fragment screen reveals 65 fragment hits across 52 datasets, with hot spots in pockets predicted to be of functional importance, including the druggable nucleotide and nucleic acid binding sites, opening the way to structure guided development of novel antiviral agents.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-393405

RESUMO

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

4.
- The COVID Moonshot Initiative; Hagit Achdout; Anthony Aimon; Elad Bar-David; Haim Barr; Amir Ben-Shmuel; James Bennett; Vitaliy A. Bilenko; Vitaliy A. Bilenko; Melissa L. Boby; Bruce Borden; Gregory R. Bowman; Juliane Brun; Sarma BVNBS; Mark Calmiano; Anna Carbery; Daniel Carney; Emma Cattermole; Edcon Chang; Eugene Chernyshenko; John D. Chodera; Austin Clyde; Joseph E. Coffland; Galit Cohen; Jason Cole; Alessandro Contini; Lisa Cox; Milan Cvitkovic; Alex Dias; Kim Donckers; David L. Dotson; Alice Douangamath; Shirly Duberstein; Tim Dudgeon; Louise Dunnett; Peter K. Eastman; Noam Erez; Charles J. Eyermann; Mike Fairhead; Gwen Fate; Daren Fearon; Oleg Fedorov; Matteo Ferla; Rafaela S. Fernandes; Lori Ferrins; Richard Foster; Holly Foster; Ronen Gabizon; Adolfo Garcia-Sastre; Victor O. Gawriljuk; Paul Gehrtz; Carina Gileadi; Charline Giroud; William G. Glass; Robert Glen; Itai Glinert; Andre S. Godoy; Marian Gorichko; Tyler Gorrie-Stone; Ed J. Griffen; Storm Hassell Hart; Jag Heer; Michael Henry; Michelle Hill; Sam Horrell; Victor D. Huliak; Matthew F.D. Hurley; Tomer Israely; Andrew Jajack; Jitske Jansen; Eric Jnoff; Dirk Jochmans; Tobias John; Steven De Jonghe; Anastassia L. Kantsadi; Peter W. Kenny; J. L. Kiappes; Serhii O. Kinakh; Lizbe Koekemoer; Boris Kovar; Tobias Krojer; Alpha Lee; Bruce A. Lefker; Haim Levy; Ivan G. Logvinenko; Nir London; Petra Lukacik; Hannah Bruce Macdonald; Beth MacLean; Tika R. Malla; Tatiana Matviiuk; Willam McCorkindale; Briana L. McGovern; Sharon Melamed; Kostiantyn P. Melnykov; Oleg Michurin; Halina Mikolajek; Bruce F. Milne; Aaron Morris; Garrett M. Morris; Melody Jane Morwitzer; Demetri Moustakas; Aline M. Nakamura; Jose Brandao Neto; Johan Neyts; Luong Nguyen; Gabriela D. Noske; Vladas Oleinikovas; Glaucius Oliva; Gijs J. Overheul; David Owen; Ruby Pai; Jin Pan; Nir Paran; Benjamin Perry; Maneesh Pingle; Jakir Pinjari; Boaz Politi; Ailsa Powell; Vladimir Psenak; Reut Puni; Victor L. Rangel; Rambabu N. Reddi; St Patrick Reid; Efrat Resnick; Emily Grace Ripka; Matthew C. Robinson; Ralph P. Robinson; Jaime Rodriguez-Guerra; Romel Rosales; Dominic Rufa; Kadi Saar; Kumar Singh Saikatendu; Chris Schofield; Mikhail Shafeev; Aarif Shaikh; Jiye Shi; Khriesto Shurrush; Sukrit Singh; Assa Sittner; Rachael Skyner; Adam Smalley; Bart Smeets; Mihaela D. Smilova; Leonardo J. Solmesky; John Spencer; Claire Strain-Damerell; Vishwanath Swamy; Hadas Tamir; Rachael Tennant; Warren Thompson; Andrew Thompson; Susana Tomasio; Igor S. Tsurupa; Anthony Tumber; Ioannis Vakonakis; Ronald P. van Rij; Laura Vangeel; Finny S. Varghese; Mariana Vaschetto; Einat B. Vitner; Vincent Voelz; Andrea Volkamer; Frank von Delft; Annette von Delft; Martin Walsh; Walter Ward; Charlie Weatherall; Shay Weiss; Kris M. White; Conor Francis Wild; Matthew Wittmann; Nathan Wright; Yfat Yahalom-Ronen; Daniel Zaidmann; Hadeer Zidane; Nicole Zitzmann.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-339317

RESUMO

The COVID-19 pandemic is a stark reminder that a barren global antiviral pipeline has grave humanitarian consequences. Future pandemics could be prevented by accessible, easily deployable broad-spectrum oral antivirals and open knowledge bases that derisk and accelerate novel antiviral discovery and development. Here, we report the results of the COVID Moonshot, a fully open-science structure-enabled drug discovery campaign targeting the SARS-CoV-2 main protease. We discovered a novel chemical scaffold that is differentiated from current clinical candidates in terms of toxicity, resistance, and pharmacokinetics liabilities, and developed it into noncovalent orally-bioavailable nanomolar inhibitors with clinical potential. Our approach leveraged crowdsourcing, high-throughput structural biology, machine learning, and exascale molecular simulations. In the process, we generated a detailed map of the structural plasticity of the main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. In a first for a structure-based drug discovery campaign, all compound designs (>18,000 designs), crystallographic data (>500 ligand-bound X-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2,400 compounds) for this campaign were shared rapidly and openly, creating a rich open and IP-free knowledgebase for future anti-coronavirus drug discovery.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-118117

RESUMO

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments was progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...