Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 41(14): 7115-27, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23748567

RESUMO

Degradation of mRNAs is usually initiated by deadenylation, the shortening of long poly(A) tails to oligo(A) tails of 12-15 As. Deadenylation leads to decapping and to subsequent 5' to 3' degradation by XRN proteins, or alternatively 3' to 5' degradation by the exosome. Decapping can also be induced by uridylation as shown for the non-polyadenylated histone mRNAs in humans and for several mRNAs in Schizosaccharomyces pombe and Aspergillus nidulans. Here we report a novel role for uridylation in preventing 3' trimming of oligoadenylated mRNAs in Arabidopsis. We show that oligo(A)-tailed mRNAs are uridylated by the cytosolic UTP:RNA uridylyltransferase URT1 and that URT1 has no major impact on mRNA degradation rates. However, in absence of uridylation, oligo(A) tails are trimmed, indicating that uridylation protects oligoadenylated mRNAs from 3' ribonucleolytic attacks. This conclusion is further supported by an increase in 3' truncated transcripts detected in urt1 mutants. We propose that preventing 3' trimming of oligo(A)-tailed mRNAs by uridylation participates in establishing the 5' to 3' directionality of mRNA degradation. Importantly, uridylation prevents 3' shortening of mRNAs associated with polysomes, suggesting that a key biological function of uridylation is to confer 5' to 3' polarity in case of co-translational mRNA decay.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas de Arabidopsis/metabolismo , Oligorribonucleotídeos/metabolismo , Processamento de Terminações 3' de RNA , RNA Nucleotidiltransferases/metabolismo , RNA Mensageiro/metabolismo , Uridina Monofosfato/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Mutação , Polirribossomos/metabolismo , RNA Nucleotidiltransferases/genética , Estabilidade de RNA , Uridina/metabolismo
2.
Nucleic Acids Res ; 39(21): 9262-74, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21768127

RESUMO

With the expansion of the RNA world, antisense strategies have become widespread to manipulate nuclear gene expression but organelle genetic systems have remained aside. The present work opens the field to mitochondria. We demonstrate that customized RNAs expressed from a nuclear transgene and driven by a transfer RNA-like (tRNA-like) moiety are taken up by mitochondria in plant cells. The process appears to follow the natural tRNA import specificity, suggesting that translocation indeed occurs through the regular tRNA uptake pathway. Upon validation of the strategy with a reporter sequence, we developed a chimeric catalytic RNA composed of a specially designed trans-cleaving hammerhead ribozyme and a tRNA mimic. Organelle import of the chimeric ribozyme and specific target cleavage within mitochondria were demonstrated in transgenic tobacco cell cultures and Arabidopsis thaliana plants, providing the first directed knockdown of a mitochondrial RNA in a multicellular eukaryote. Further observations point to mitochondrial messenger RNA control mechanisms related to the plant developmental stage and culture conditions. Transformation of mitochondria is only accessible in yeast and in the unicellular alga Chlamydomonas. Based on the widespread tRNA import pathway, our data thus make a breakthrough for direct investigation and manipulation of mitochondrial genetics.


Assuntos
Mitocôndrias/metabolismo , RNA Catalítico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Engenharia Genética , Dados de Sequência Molecular , RNA/metabolismo , Transporte de RNA , RNA Catalítico/química , RNA Mitocondrial , RNA de Transferência/química , RNA de Transferência/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
3.
EMBO J ; 30(4): 731-43, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21240189

RESUMO

Protein ubiquitylation regulates a broad variety of biological processes in all eukaryotes. Recent work identified a novel class of cullin-containing ubiquitin ligases (E3s) composed of CUL4, DDB1, and one WD40 protein, believed to act as a substrate receptor. Strikingly, CUL4-based E3 ligases (CRL4s) have important functions at the chromatin level, including responses to DNA damage in metazoans and plants and, in fission yeast, in heterochromatin silencing. Among putative CRL4 receptors we identified MULTICOPY SUPPRESSOR OF IRA1 (MSI1), which belongs to an evolutionary conserved protein family. MSI1-like proteins contribute to different protein complexes, including the epigenetic regulatory Polycomb repressive complex 2 (PRC2). Here, we provide evidence that Arabidopsis MSI1 physically interacts with DDB1A and is part of a multimeric protein complex including CUL4. CUL4 and DDB1 loss-of-function lead to embryo lethality. Interestingly, as in fis class mutants, cul4 mutants exhibit autonomous endosperm initiation and loss of parental imprinting of MEDEA, a target gene of the Arabidopsis PRC2 complex. In addition, after pollination both MEDEA transcript and protein accumulate in a cul4 mutant background. Overall, our work provides the first evidence of a physical and functional link between a CRL4 E3 ligase and a PRC2 complex, thus indicating a novel role of ubiquitylation in the repression of gene expression.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Impressão Genômica/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Culina/genética , Proteínas Culina/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Impressão Genômica/genética , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Plantas Geneticamente Modificadas , Ligação Proteica/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Homologia de Sequência de Aminoácidos , Ubiquitinação/fisiologia
4.
Mol Plant Microbe Interact ; 24(1): 44-53, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20822423

RESUMO

Agrobacterium rhizogenes induces hairy roots through the activity of three essential T-DNA genes, rolA, rolB, and rolC, whereas the orf13 gene acts as an accessory root-inducing gene. rolB, rolC, and orf13 belong to the highly diverged plast gene family with remotely related representatives in the endomycorrhizal basidiomycete Laccaria bicolor. Nicotiana glauca and N. tabacum contain A. rhizogenes-derived T-DNAs with active plast genes. Here, we report on the properties of a rolC homolog in N. tabacum, trolC. Dexamethasone-inducible trolC and A4-rolC genes from A. rhizogenes A4 induce comparable, strong growth effects affecting all parts of the plants. Several have not been described earlier and were found to be very similar to the effects of the distantly related plast gene 6b. They include leaf chlorosis and starch accumulation, enations, increase of sucrose-dependent leaf disk expansion, growth of isolated roots on low-sucrose media, and stimulation of sucrose uptake by small root fragments. Collectively, our findings indicate that enhancement of sucrose uptake plays an important role in generating the complex 6b and rolC phenotypes and might be an ancestral property of the plast genes.


Assuntos
Laccaria/genética , Nicotiana/genética , Proteínas de Plantas/genética , Rhizobium/genética , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , DNA de Plantas/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana/microbiologia
5.
Appl Environ Microbiol ; 76(3): 648-51, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19948846

RESUMO

Terminal restriction fragment length polymorphism (T-RFLP) is used to monitor the structural diversity of complex microbial communities in terms of richness, relative abundance, and distribution of the major subpopulations and individual members. However, discrepancies of several nucleotides between expected and experimentally observed lengths of terminal restriction fragments (T-RFs), together with the difficulty of obtaining DNA sequence information from T-RFLP profiling, often prevent accurate phylogenetic characterization of the microbial community of interest. In this study, T-RFLP analysis of DNA from an artificial assembly of five bacterial strains was carried out with a combination of two size markers with different fluorescent tags. Precise sizing of T-RFs in the 50- to 500-nucleotide range was achieved by using the same dye for both samples and size markers. Phylogenetic assignment of the component microbial strains was facilitated by coupling T-RFLP to denaturing high-performance liquid chromatography (D-HPLC) of 16S RNA gene fragments followed by direct sequencing. The proposed coupling of D-HPLC and T-RFLP provides unambiguous characterization of microbial communities containing less than 15 microbial strains.


Assuntos
Bactérias/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Polimorfismo de Fragmento de Restrição , Bactérias/classificação , Bactérias/genética , Biodiversidade , Biologia Computacional , Impressões Digitais de DNA , DNA Bacteriano/análise , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/genética , Ecossistema , Corantes Fluorescentes , Genes Bacterianos , Variação Genética , Modelos Biológicos , Modelos Genéticos , Conformação de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Curr Biol ; 19(14): 1188-93, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19576768

RESUMO

Plant growth involves the integration of many environmental and endogenous signals that together with the intrinsic genetic program determine plant size. At the cellular level, growth rate is regulated by the combined activity of two processes: cell proliferation and expansion. Gibberellins (GA) are plant-specific hormones that play a central role in the regulation of growth and development with respect to environmental variability. It is well established that GA promote growth through cell expansion by stimulating the destruction of growth-repressing DELLA proteins (DELLAs); however, their effects on cell proliferation remain unknown. Kinematic analysis of leaf and root meristem growth revealed a novel function of DELLAs in restraining cell production. Moreover, by visualizing the cell cycle marker cyclinB1::beta-glucuronidase in GA-signaling mutants, we show that GA modulate cell cycle activity in the root meristem via a DELLA-dependent mechanism. Accordingly, expressing gai (a nondegradable DELLA protein) solely in root meristem reduced substantially the number of dividing cells. We also show that DELLAs restrain cell production by enhancing the levels of the cell cycle inhibitors Kip-related protein 2 (KRP2) and SIAMESE (SIM). Therefore, DELLAs exert a general plant growth inhibitory activity by reducing both cell proliferation and expansion rates, enabling phenotypic plasticity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
7.
Plant Cell ; 20(8): 2117-29, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18757556

RESUMO

Plants have evolved robust mechanisms to respond and adapt to unfavorable environmental conditions, such as low temperature. The C-repeat/drought-responsive element binding factor CBF1/DREB1b gene encodes a transcriptional activator transiently induced by cold that controls the expression of a set of genes responding to low temperature (the CBF regulon). Constitutive expression of CBF1 confers freezing tolerance but also slows growth. Here, we propose that low temperature-induced CBF1 expression restrains growth at least in part by allowing the accumulation of DELLAs, a family of nuclear growth-repressing proteins, the degradation of which is stimulated by gibberellin (GA). We show that cold/CBF1 enhances the accumulation of a green fluorescent protein (GFP)-tagged DELLA protein (GFP-RGA) by reducing GA content through stimulating expression of GA-inactivating GA 2-oxidase genes. Accordingly, transgenic plants that constitutively express CBF1 accumulate less bioactive GA and as a consequence exhibit dwarfism and late flowering. Both phenotypes are suppressed when CBF1 is expressed in a line lacking two DELLA proteins, GA-INSENSITIVE and REPRESSOR OF GA1-3. In addition, we show that DELLAs contribute significantly to CBF1-induced cold acclimation and freezing tolerance by a mechanism that is distinct from the CBF regulon. We conclude that DELLAs are components of the CBF1-mediated cold stress response.


Assuntos
Proteínas de Arabidopsis/fisiologia , Temperatura Baixa , Giberelinas/metabolismo , Transdução de Sinais/fisiologia , Transativadores/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Immunoblotting , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transativadores/genética , Transativadores/metabolismo
8.
Mol Cell Biol ; 26(7): 2869-76, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16537927

RESUMO

Plant mitochondrial genomes are extraordinarily large and complex compared to their animal counterparts, due to the presence of large noncoding regions. Multiple promoters are common for plant mitochondrial genes, and transcription exhibits little or no modulation. Mature functional RNAs are produced through various posttranscriptional processes, and control of RNA stability has a major impact on RNA abundance. This control involves polyadenylation which targets RNA for degradation by polynucleotide phosphorylase (PNPase). Here, we have analyzed polyadenylated RNA fragments from Arabidopsis plants down-regulated for PNPase (PNP- plants). Because of their polyadenylated status and the accumulation of the corresponding RNA in PNP- versus wild-type plants, these sequences represent mitochondrial RNA degradation tags. Analysis of these tags revealed that PNPase is involved in degrading rRNA and tRNA maturation by-products but also RNA transcribed from regions that are in some cases highly expressed although lacking known functional genes. Some of these transcripts, such as RNA containing chimeric open reading frames created by recombination or antisense RNA transcribed on the opposite strand of a known gene, may present potential detrimental effects to mitochondrial function. Taken together, our data show that the relaxed transcription in Arabidopsis mitochondria is counterbalanced by RNA stability control mediated by polyadenylation and PNPase.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Mitocôndrias/genética , Poliadenilação/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Estabilidade de RNA/genética , Transcrição Gênica/genética , Genes de Plantas , Mitocôndrias/metabolismo , Edição de RNA/genética , RNA Antissenso/metabolismo , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo
9.
Plant Mol Biol ; 52(5): 1025-36, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14558662

RESUMO

We have used RT-PCR and low-stringency cDNA library screening to isolate the coding sequence of the sunflower auxin-binding protein (ABP1). All the clones analysed contained the same nucleotide sequence, suggesting that ABP1 is encoded by a single-copy gene in sunflower. The deduced amino acid sequence shows a high degree of similarity with ABP1 proteins from other plant species. Most remarkably, the sunflower protein lacks two cysteine residues present in all other plant ABPs known to date and shown to be involved in a disulfide bridge in the maize protein. Genomic Southern hybridization data support the existence of a single copy of the ABP1 gene in the sunflower genome. Northern hybridization corroborated earlier observations indicating that the steady-state level of ABP1 transcript is higher in actively dividing and growing organs than in the rest of the plant: it is more abundant in the shoot apex, floral buds and immature embryos than in mature leaves, stem, roots and ray flowers. To characterize the tissular ABP1 transcript distribution in sunflower, various organ sections were analysed upon in situ hybridization. Localized accumulation of the ABP1 transcript suggests that its spatial expression is highly regulated at the tissue level. In addition, the transcript preferentially accumulates in tissues having a high rate of cellular division, such as shoot and root apical meristems, leaf primordia and pro-vascular tissues. The ABP1 expression pattern was also studied at a temporal scale during lateral root formation. Real time PCR showed an elevation of the steady state level of the ABP1 transcript in root axes after 36 h of seed germination. In situ hybridization revealed that this global increase is the result of local accumulation of the ABP1 transcript in lateral root primordia, which are known to develop under auxin action. The possibility that a high ABP1 expression level correlates with a high cellular sensitivity to auxin is discussed.


Assuntos
Helianthus/genética , Receptores de Superfície Celular/genética , Sequência de Aminoácidos , Northern Blotting , Southern Blotting , DNA/genética , DNA/metabolismo , DNA Complementar/química , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Desoxirribonuclease BamHI/metabolismo , Desoxirribonuclease HindIII/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Helianthus/crescimento & desenvolvimento , Hibridização In Situ , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...