Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Disaster Risk Reduct ; 93: 103794, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37309508

RESUMO

The world has experienced an unprecedented global health crisis since 2020, the COVID-19 pandemic, which inflicted massive burdens on countries' healthcare systems. During the peaks of the pandemic, the shortages of intensive care unit (ICU) beds illustrated a critical vulnerability in the fight. Many individuals suffering the effects of COVID-19 had difficulty accessing ICU beds due to insufficient capacity. Unfortunately, it has been observed that many hospitals do not have enough ICU beds, and the ones with ICU capacity might not be accessible to all population strata. To remedy this going forward, field hospitals could be established to provide additional capacity in helping emergency health situations such as pandemics; however, location selection is a crucial decision ultimately for this purpose. As such, we consider finding new field hospital locations to serve the demand within certain travel-time thresholds, while accounting for the presence of vulnerable populations. A multi-objective mathematical model is proposed in this paper that maximizes the minimum accessibility and minimizes the travel time by integrating the Enhanced 2-Step Floating Catchment Area (E2SFCA) method and travel-time-constrained capacitated p-median model. This is performed to decide on the locations of field hospitals, while a sensitivity analysis addresses hospital capacity, demand level, and the number of field hospital locations. Four counties in Florida are selected to implement the proposed approach. Findings can be used to identify the ideal location(s) of capacity expansions concerning the fair distribution of field hospitals in terms of accessibility with a specific focus on vulnerable strata of the population.

2.
Sci Rep ; 13(1): 4883, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966187

RESUMO

Roadways are critical infrastructure in our society, providing services for people through and between cities. However, they are prone to closures and disruptions, especially after extreme weather events like hurricanes. At the same time, traffic flow data are a fundamental type of information for any transportation system. In this paper, we tackle the problem of traffic sensor placement on roadways to address two tasks at the same time. The first task is traffic data estimation in ordinary situations, which is vital for traffic monitoring and city planning. We design a graph-based method to estimate traffic flow on roads where sensors are not present. The second one is enhanced observability of roadways in case of extreme weather events. We propose a satellite-based multi-domain risk assessment to locate roads at high risk of closures. Vegetation and flood hazards are taken into account. We formalize the problem as a search method over the network to suggest the minimum number and location of traffic sensors to place while maximizing the traffic estimation capabilities and observability of the risky areas of a city.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...