Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 128(5): 1985-1999, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29629904

RESUMO

Thirteen percent of pregnancies result in preterm birth or stillbirth, accounting for fifteen million preterm births and three and a half million deaths annually. A significant cause of these adverse pregnancy outcomes is in utero infection by vaginal microorganisms. To establish an in utero infection, vaginal microbes enter the uterus by ascending infection; however, the mechanisms by which this occurs are unknown. Using both in vitro and murine models of vaginal colonization and ascending infection, we demonstrate how a vaginal microbe, group B streptococcus (GBS), which is frequently associated with adverse pregnancy outcomes, uses vaginal exfoliation for ascending infection. GBS induces vaginal epithelial exfoliation by activation of integrin and ß-catenin signaling. However, exfoliation did not diminish GBS vaginal colonization as reported for other vaginal microbes. Rather, vaginal exfoliation increased bacterial dissemination and ascending GBS infection, and abrogation of exfoliation reduced ascending infection and improved pregnancy outcomes. Thus, for some vaginal bacteria, exfoliation promotes ascending infection rather than preventing colonization. Our study provides insight into mechanisms of ascending infection by vaginal microbes.


Assuntos
Células Epiteliais/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia , Vagina/imunologia , Vaginose Bacteriana/imunologia , Animais , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Camundongos , Camundongos Knockout , Infecções Estreptocócicas/patologia , Vagina/microbiologia , Vagina/patologia , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/patologia
2.
J Infect Dis ; 217(10): 1626-1636, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29425317

RESUMO

Preterm birth is a leading cause of neonatal mortality and lacks an effective therapy. Ascending microbial infections from the lower genital tract lead to infection of the placenta, amniotic fluid, and fetus causing preterm birth or stillbirth. Directly in the path of an ascending infection is the cervical mucus plug (CMP), a dense mucoid structure in the cervical canal with potential antimicrobial properties. In this study, we aimed to define the components of CMP responsible for antimicrobial activity against a common lower genital tract organism associated with preterm birth and stillbirths, namely, group B streptococcus (GBS). Using a quantitative proteomic approach, we identified antimicrobial factors in CMPs that were collected from healthy human pregnancies. However, we noted that the concentration of antimicrobial peptides present in the human CMPs were insufficient to directly kill GBS, and antimicrobial activity, when observed, was due to antibiotics retained in the CMPs. Despite this insufficiency, CMP proteins were able to activate leukocytes in whole blood resulting in increased rates of bacterial killing, suggesting a role for the CMP in enhancing complement-mediated killing or leukocyte activation. This study provides new insight into how the human CMP may limit ascending bacterial infection.


Assuntos
Antibacterianos/uso terapêutico , Muco do Colo Uterino/microbiologia , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus/efeitos dos fármacos , Líquido Amniótico/microbiologia , Colo do Útero/microbiologia , Feminino , Idade Gestacional , Humanos , Placenta/microbiologia , Gravidez , Nascimento Prematuro/microbiologia , Proteômica
3.
Sci Immunol ; 1(4)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27819066

RESUMO

Preterm birth is a leading cause of neonatal morbidity and mortality. Although microbial invasion of the amniotic cavity (MIAC) is associated with the majority of early preterm births, the temporal events that occur during MIAC and preterm labor are not known. Group B Streptococci (GBS) are ß-hemolytic, gram-positive bacteria, which commonly colonize the vagina but have been recovered from the amniotic fluid in preterm birth cases. To understand temporal events that occur during MIAC, we utilized a unique chronically catheterized nonhuman primate model that closely emulates human pregnancy. This model allows monitoring of uterine contractions, timing of MIAC and immune responses during pregnancy-associated infections. Here, we show that adverse outcomes such as preterm labor, MIAC, and fetal sepsis were observed more frequently during infection with hemolytic GBS when compared to nonhemolytic GBS. Although MIAC was associated with systematic progression in chorioamnionitis beginning with chorionic vasculitis and progressing to neutrophilic infiltration, the ability of the GBS hemolytic pigment toxin to induce neutrophil cell death and subvert killing by neutrophil extracellular traps (NETs) in placental membranes in vivo facilitated MIAC and fetal injury. Furthermore, compared to maternal neutrophils, fetal neutrophils exhibit decreased neutrophil elastase activity and impaired phagocytic functions to GBS. Collectively, our studies demonstrate how a unique bacterial hemolytic lipid toxin enables GBS to circumvent neutrophils and NETs in placental membranes to induce fetal injury and preterm labor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...