RESUMO
The role of 1,25(OH)(2)D(3) on the intestinal NCX activity was studied in vitamin D-deficient chicks (-D) as well as the hormone effect on NCX1 protein and gene expression and the potential molecular mechanisms underlying the responses. Normal, -D and -D chicks treated with cholecalciferol or 1,25(OH)(2)D(3) were employed. In some experiments, -D chicks were injected with cycloheximide or with cycloheximide and 1,25(OH)(2)D(3) simultaneously. NCX activity was decreased by -D diet, returning to normal values after 50 IU daily of cholecalciferol/10 days or a dose of 1µg calcitriol/kg of b.w. for 15 h. Cycloheximide blocked NCX activity enhancement produced by 1,25(OH)(2)D(3). NCX1 protein and gene expression were diminished by -D diet and enhanced by 1,25(OH)(2)D(3). Vitamin D receptor expression was decreased by -D diet, effect that disappeared after 1,25(OH)(2)D(3) treatment. Rapid effects of 1,25(OH)(2)D(3) on intestinal NCX activity were also demonstrated. The abolition of the rapid effects through addition of Rp-cAMPS and staurosporine suggests that non genomic effects of 1,25(OH)(2)D(3) on NCX activity are mediated by activation of PKA and PKC pathways. In conclusion, 1,25(OH)(2)D(3) enhances the intestinal NCX activity in -D chicks through genomic and non genomic mechanisms.
Assuntos
Calcitriol/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Trocador de Sódio e Cálcio/metabolismo , Deficiência de Vitamina D/metabolismo , Vitaminas/farmacologia , Animais , Calcitriol/uso terapêutico , Agonistas dos Canais de Cálcio/uso terapêutico , Galinhas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vitamina D/metabolismo , Deficiência de Vitamina D/tratamento farmacológico , Vitaminas/uso terapêuticoRESUMO
Slo3 channels belong to the high conductance Slo K+ channel family. They are activated by voltage and intracellular alkalinization, and have a K+/Na+ permeability ratio (PK/PNa) of only approximately 5. Slo3 channels have only been found in mammalian sperm. Here we show that Slo3 channels expressed in Xenopus oocytes are also stimulated by elevated cAMP levels through PKA dependent phosphorylation. Capacitation, a maturational process required by mammalian sperm to enable them to fertilize eggs, involves intracellular alkalinization and an increase in cAMP. Our mouse sperm patch clamp recordings have revealed a K+ current that is time and voltage dependent, is activated by intracellular alkalinization, has a PK/PNa > or = 5, is weakly blocked by TEA and is very sensitive to Ba2+. This current is also stimulated by cAMP. All of these properties match those displayed by heterologously expressed Slo3 channels, suggesting that the native current we observe in sperm is indeed carried by Slo3 channels.
Assuntos
AMP Cíclico/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Espermatozoides/metabolismo , Animais , AMP Cíclico/farmacologia , Concentração de Íons de Hidrogênio , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Camundongos , Técnicas de Patch-Clamp , Espermatozoides/efeitos dos fármacosRESUMO
The aim of this study was to determine genotypes and clinical aspects associated with bone mineral density (BMD) in postmenopausal women from Córdoba, Argentina. Polymorphisms were assessed by RFLP-PCR technique using BsmI and FokI for vitamin D receptor gene (VDR) and XbaI and PvuII for estrogen receptor-alpha gene (ERalpha) as restrictases. Sixty-eight healthy, 54 osteopenic, and 64 osteoporotic postmenopausal women were recruited. Femoral neck and lumbar spine BMD were inversely correlated with age in the entire analyzed population. Height was lower in osteopenic and osteoporotic women as compared to healthy women (P < 0.05). Weight and body mass index (BMI) were the lowest in osteoporotic women (P < 0.01 versus healthy group). Serum procollagen type I Nterminal propeptide (PINP) was higher in osteoporotic women as compared to the other groups. Distribution of VDR and ERalpha genotypes was similar in the three groups. Genotype bb (VDR) was associated with low values of lumbar BMD in the healthy group (P < 0.05 versus genotype Bb), and with low values of femoral BMD (P < 0.05 versus genotype BB) in osteoporotic women. BB*Pp interaction was associated with the highest femoral neck BMD (P < 0.05), whereas the bb*xx interaction was associated with the lowest femoral neck BMD in the total population analyzed (P < 0.05). In conclusion, parameters such as age, height, weight, BMI, serum PINP, VDR genotypes, and interactions between VDR and ERalpha genotypes could be useful to predict a decrease in BMD in Argentine postmenopausal women.
Assuntos
Densidade Óssea/genética , Pós-Menopausa/genética , Argentina , Estatura , Índice de Massa Corporal , Peso Corporal , Feminino , Colo do Fêmur/fisiologia , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Vértebras Lombares/fisiologia , Pessoa de Meia-Idade , Fragmentos de Peptídeos/metabolismo , Polimorfismo Genético , Pró-Colágeno/metabolismo , Receptores de Calcitriol/genética , Receptores de Estrogênio/genéticaRESUMO
Ca2+ uptake and Ca2+ extrusion mechanisms were studied in enterocytes with different degree of differentiation from chicks adapted to a low Ca2+ diet as compared to animals fed a normal diet. Chicks adapted to a low Ca2+ diet presented hypocalcemia, hypophosphatemia and increased serum 1,25(OH)2D3 and Ca2+ absorption. Low Ca2+ diet increased the alkaline phosphatase (AP) activity, independently of the cellular maturation, but it did not alter gamma-glutamyl-transpeptidase activity. Ca2+ uptake, Ca2+-ATPase and Na(+)/Ca2+ exchanger activities and expressions were increased by the mineral-deficient diet either in mature or immature enterocytes. Western blots analysis shows that vitamin D receptor (VDR) expression was much higher in crypt cells than in mature cells. Low Ca2+ diet decreased the number of vitamin D receptor units in both kinds of cells. In conclusion, changes in Ca2+ uptake and Ca2+ extrusion mechanisms in the enterocytes by a low Ca2+ diet appear to be a result of enhanced serum levels of 1,25(OH)2D3, which would promote cellular differentiation producing cells more efficient to express vitamin D dependent genes required for Ca2+ absorption.
Assuntos
Ração Animal , Cálcio da Dieta/metabolismo , Cálcio/deficiência , Cálcio/metabolismo , Enterócitos/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Calcitriol/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Diferenciação Celular , Embrião de Galinha , Galinhas , Duodeno/metabolismo , Immunoblotting , Membranas Intracelulares/metabolismo , Receptores de Calcitriol/metabolismo , Trocador de Sódio e Cálcio , Fatores de Tempo , Vitamina D/metabolismo , gama-Glutamiltransferase/metabolismoRESUMO
The effect of a single large dose of menadione on intestinal calcium absorption and associated variables was investigated in chicks fed a normal diet. The data show that 2.5 micro mol of menadione/kg of b.w. causes inhibition of calcium transfer from lumen-to-blood within 30 min. This effect seems to be related to oxidative stress provoked by menadione as judged by glutathione depletion and an increment in the total carbonyl group content produced at the same time. Two enzymes presumably involved in calcium transcellular movement, such as alkaline phosphatase, located in the brush border membrane, and Ca(2+)- pump ATPase, which sits in the basolateral membrane, were also inhibited. The enzyme inhibition could be due to alterations caused by the appearance of free hydroxyl groups, which are triggered by glutathione depletion. Addition of glutathione monoester to the duodenal loop caused reversion of the menadione effect on both intestinal calcium absorption and alkaline phosphatase activity. In conclusion, menadione shifts the balance of oxidative and reductive processes in the enterocyte towards oxidation causing deleterious effects on intestinal Ca(2+) absorption and associated variables, which could be prevented by administration of oral glutathione monoester.